Dessins D'enfants and Some Holomorphic Structures on the Loch Ness Monster

被引:2
作者
Atarihuana, Yasmina [1 ]
Garcia, Juan [1 ]
Hidalgo, Ruben A. [2 ]
Quispe, Saul [2 ]
Ramirez Maluendas, Camilo [3 ]
机构
[1] Univ Cent Ecuador, Fac Ciencias, Quito 170129, Ecuador
[2] Univ La Frontera, Dept Matemat & Estadist, Temuco 4780000, Chile
[3] Univ Nacl Colombia, Dept Matemat & Estadist, Sede Manizales, Manizales 170004, Colombia
关键词
D O I
10.1093/qmath/haab034
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The theory of dessins d'enfants on compact Riemann surfaces, which are bipartite maps on compact orientable surfaces, are combinatorial objects used to study branched covers between compact Riemann surfaces and the absolute Galois group of the field of rational numbers. In this paper, we show how this theory is naturally extended to non-compact orientable surfaces and, in particular, we observe that the Loch Ness monster (LNM; the surface of infinite genus with exactly one end) admits infinitely many regular dessins d'enfants (either chiral or reflexive). In addition, we study different holomorphic structures on the LNM, which come from homology covers of compact Riemann surfaces, and infinite hyperelliptic and infinite superelliptic curves.
引用
收藏
页码:349 / 367
页数:19
相关论文
共 30 条
[1]  
[Anonymous], 2008, Grad. Texts in Math.
[2]  
[Anonymous], 1949, Comment. Math. Helv.
[3]   On Infinitely generated Fuchsian groups of the Loch Ness monster, the Cantor tree and the Blooming Cantor tree [J].
Arredondo, John A. ;
Ramirez Maluendas, Camilo .
COMPLEX MANIFOLDS, 2020, 7 (01) :73-92
[4]  
Arredondo JA, 2017, COMMENT MATH UNIV CA, V58, P465, DOI 10.14712/1213-7243.2015.227
[5]   On the topology of infinite regular and chiral maps [J].
Arredondo, John A. ;
Ramirez Maluendas, Camilo ;
Valdez, Ferran .
DISCRETE MATHEMATICS, 2017, 340 (06) :1180-1186
[6]   ON GALOIS EXTENSIONS OF A MAXIMAL CYCLOTOMIC FIELD [J].
BELYI, GV .
MATHEMATICS OF THE USSR-IZVESTIYA, 1980, 14 (02) :247-256
[7]  
Diestel R., 2017, Graduate texts in mathematics, V5th, DOI [10.1007/978-3-662-53622-3, DOI 10.1007/978-3-662-53622-3]
[8]  
Dugundji J, 1978, TOPOLOGY
[9]  
Farkas HM, 1992, GRADUATE TEXTS MATH, V71, DOI DOI 10.1007/978-1-4612-2034-3
[10]   On the terminations of topological spaces and groups. [J].
Freudenthal, H .
MATHEMATISCHE ZEITSCHRIFT, 1931, 33 :692-713