Auto-Surprise: An Automated Recommender-System (AutoRecSys) Library with Tree of Parzens Estimator (TPE) Optimization

被引:10
作者
Anand, Rohan [1 ]
Beel, Joeran [1 ]
机构
[1] Trinity Coll Dublin, Dublin, Ireland
来源
RECSYS 2020: 14TH ACM CONFERENCE ON RECOMMENDER SYSTEMS | 2020年
关键词
AutoRecSys; AutoML; algorithm selection; hyperparameter optimization;
D O I
10.1145/3383313.3411467
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
We introduce Auto-Surprise(1), an automated recommender system library. Auto-Surprise is an extension of the Surprise recommender system library and eases the algorithm selection and configuration process. Compared to an out-of-the-box Surprise library, without hyper parameter optimization, AutoSurprise performs better, when evaluated with MovieLens, Book Crossing and Jester datasets. It may also result in the selection of an algorithm with significantly lower runtime. Compared to Surprise's grid search, Auto-Surprise performs equally well or slightly better in terms of RMSE, and is notably faster in finding the optimum hyperparameters.
引用
收藏
页码:585 / 587
页数:3
相关论文
共 24 条
[21]  
Olson RS, 2019, SPRING SER CHALLENGE, P151, DOI 10.1007/978-3-030-05318-5_8
[22]  
Snoek J., 2012, P 25 INT C NEURAL IN, DOI 10.48550/arXiv.1206.2944
[23]   Auto-WEKA: Combined Selection and Hyperparameter Optimization of Classification Algorithms [J].
Thornton, Chris ;
Hutter, Frank ;
Hoos, Holger H. ;
Leyton-Brown, Kevin .
19TH ACM SIGKDD INTERNATIONAL CONFERENCE ON KNOWLEDGE DISCOVERY AND DATA MINING (KDD'13), 2013, :847-855
[24]  
Ziegler Cai-Nicolas, 2005, P 14 INT C WORLD WID, P22, DOI [10.1145/1060745.1060754, DOI 10.1145/1060745.1060754]