Nonadiabatic geometric quantum computation protected by dynamical decoupling via the XXZ Hamiltonian

被引:5
|
作者
Wu, X. [1 ]
Zhao, P. Z. [1 ]
机构
[1] Shandong Univ, Dept Phys, Jinan 250100, Peoples R China
基金
中国博士后科学基金; 中国国家自然科学基金;
关键词
nonadiabatic geometric quantum computation; dynamical decoupling; XXZ Hamiltonian; ROBUST;
D O I
10.1007/s11467-021-1128-z
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Nonadiabatic geometric quantum computation protected by dynamical decoupling combines the robustness of nonadiabatic geometric gates and the decoherence-resilience feature of dynamical decoupling. Solid-state systems provide an appealing candidate for the realization of nonadiabatic geometric quantum computation protected dynamical decoupling since the solid-state qubits are easily embedded in electronic circuits and scaled up to large registers. In this paper, we put forward a scheme of nonadiabatic geometric quantum computation protected by dynamical decoupling via the XXZ Hamiltonian, which not only combines the merits of nonadiabatic geometric gates and dynamical decoupling but also can be realized in a number of solid-state systems, such as superconducting circuits and quantum dots.
引用
收藏
页数:9
相关论文
共 50 条
  • [41] Geometric phase shift in quantum computation using superconducting nanocircuits: Nonadiabatic effects
    Zhu, SL
    Wang, ZD
    PHYSICAL REVIEW A, 2002, 66 (04): : 4
  • [42] Nonadiabatic Geometric Quantum Computation by Straightway Varying Parameters of Magnetic: A New Design
    Ji, Y. H.
    INTERNATIONAL JOURNAL OF THEORETICAL PHYSICS, 2009, 48 (10) : 2843 - 2848
  • [43] Invariant-based inverse engineering for fast nonadiabatic geometric quantum computation
    Li, Wei
    NEW JOURNAL OF PHYSICS, 2021, 23 (07):
  • [44] High Fidelity Quantum Gates via Dynamical Decoupling
    West, Jacob R.
    Lidar, Daniel A.
    Fong, Bryan H.
    Gyure, Mark F.
    PHYSICAL REVIEW LETTERS, 2010, 105 (23)
  • [45] Concatenating dynamical decoupling with decoherence-free subspaces for quantum computation
    Zhang, Y
    Zhou, ZW
    Yu, B
    Guo, GC
    PHYSICAL REVIEW A, 2004, 69 (04): : 042315 - 1
  • [46] Digital Quantum Simulation of Nonadiabatic Geometric Gates via Shortcuts to Adiabaticity
    Wang, Yapeng
    Ding, Yongcheng
    Wang, Jianan
    Chen, Xi
    ENTROPY, 2020, 22 (10) : 1 - 11
  • [47] Flexible scheme for the implementation of nonadiabatic geometric quantum computation (vol 101, 032322, 2020)
    Kang, Yi-Hao
    Shi, Zhi-Cheng
    Huang, Bi-Hua
    Song, Jie
    Xia, Yan
    PHYSICAL REVIEW A, 2020, 101 (04)
  • [48] Simple construction of Rydberg quantum cloning machines via nonadiabatic geometric quantum operations
    Zhu, X. -Y.
    Fang, B. -L.
    Li, Y. -H.
    Guo, F. -Q.
    Liang, E. -J.
    Yan, L. -L.
    Su, S. -L.
    PHYSICAL REVIEW A, 2022, 106 (05)
  • [49] Protecting dissipative quantum state preparation via dynamical decoupling
    Gong, Z. R.
    Yao, Wang
    PHYSICAL REVIEW A, 2013, 87 (03)
  • [50] Higher-order protection of quantum gates: Hamiltonian engineering coordinated with dynamical decoupling
    Zhao, P.Z.
    Chen, Tianqi
    Liu, Sirui
    Gong, Jiangbin
    Physical Review A, 2025, 111 (02)