Nonadiabatic geometric quantum computation protected by dynamical decoupling via the XXZ Hamiltonian

被引:5
|
作者
Wu, X. [1 ]
Zhao, P. Z. [1 ]
机构
[1] Shandong Univ, Dept Phys, Jinan 250100, Peoples R China
基金
中国博士后科学基金; 中国国家自然科学基金;
关键词
nonadiabatic geometric quantum computation; dynamical decoupling; XXZ Hamiltonian; ROBUST;
D O I
10.1007/s11467-021-1128-z
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Nonadiabatic geometric quantum computation protected by dynamical decoupling combines the robustness of nonadiabatic geometric gates and the decoherence-resilience feature of dynamical decoupling. Solid-state systems provide an appealing candidate for the realization of nonadiabatic geometric quantum computation protected dynamical decoupling since the solid-state qubits are easily embedded in electronic circuits and scaled up to large registers. In this paper, we put forward a scheme of nonadiabatic geometric quantum computation protected by dynamical decoupling via the XXZ Hamiltonian, which not only combines the merits of nonadiabatic geometric gates and dynamical decoupling but also can be realized in a number of solid-state systems, such as superconducting circuits and quantum dots.
引用
收藏
页数:9
相关论文
共 50 条
  • [31] Path-optimized nonadiabatic geometric quantum computation on superconducting qubits
    Ding, Cheng-Yun
    Ji, Li-Na
    Chen, Tao
    Xue, Zheng-Yuan
    QUANTUM SCIENCE AND TECHNOLOGY, 2022, 7 (01)
  • [32] Nonadiabatic geometric quantum computation using a single-loop scenario
    Zhang, XD
    Zhu, SL
    Hu, L
    Wang, ZD
    PHYSICAL REVIEW A, 2005, 71 (01):
  • [33] Combining dynamical decoupling with fault-tolerant quantum computation
    Ng, Hui Khoon
    Lidar, Daniel A.
    Preskill, John
    PHYSICAL REVIEW A, 2011, 84 (01)
  • [34] Nonadiabatic geometric quantum computation in decoherence-free subspaces based on unconventional geometric phases
    Zhao, P. Z.
    Xu, G. F.
    Tong, D. M.
    PHYSICAL REVIEW A, 2016, 94 (06)
  • [35] Coherence-Protected Quantum Gate by Continuous Dynamical Decoupling in Diamond
    Xu, Xiangkun
    Wang, Zixiang
    Duan, Changkui
    Huang, Pu
    Wang, Pengfei
    Wang, Ya
    Xu, Nanyang
    Kong, Xi
    Shi, Fazhan
    Rong, Xing
    Du, Jiangfeng
    PHYSICAL REVIEW LETTERS, 2012, 109 (07)
  • [36] Protected Quantum Computing: Interleaving Gate Operations with Dynamical Decoupling Sequences
    Zhang, Jingfu
    Souza, Alexandre M.
    Brandao, Frederico Dias
    Suter, Dieter
    PHYSICAL REVIEW LETTERS, 2014, 112 (05)
  • [37] Nonadiabatic geometric quantum computation with cat-state qubits via invariant-based reverse engineering
    Kang, Yi-Hao
    Chen, Ye-Hong
    Wang, Xin
    Song, Jie
    Xia, Yan
    Miranowicz, Adam
    Zheng, Shi-Biao
    Nori, Franco
    PHYSICAL REVIEW RESEARCH, 2022, 4 (01):
  • [38] Multiple-qubit nonadiabatic noncyclic geometric quantum computation in Rydberg atoms
    Guo, F-Q
    Zhu, X-Y
    Yun, M-R
    Yan, L-L
    Zhang, Y.
    Jia, Y.
    Su, S-L
    EPL, 2022, 137 (05)
  • [39] Nonadiabatic Geometric Quantum Computation by Straightway Varying Parameters of Magnetic: A New Design
    Y. H. Ji
    International Journal of Theoretical Physics, 2009, 48 : 2843 - 2848
  • [40] Geometric phase shift in quantum computation using superconducting nanocircuits: Nonadiabatic effects
    Zhu, Shi-Liang
    Wang, Z.D.
    Physical Review A - Atomic, Molecular, and Optical Physics, 2002, 66 (04): : 423221 - 423224