Nonadiabatic geometric quantum computation protected by dynamical decoupling via the XXZ Hamiltonian

被引:5
|
作者
Wu, X. [1 ]
Zhao, P. Z. [1 ]
机构
[1] Shandong Univ, Dept Phys, Jinan 250100, Peoples R China
基金
中国博士后科学基金; 中国国家自然科学基金;
关键词
nonadiabatic geometric quantum computation; dynamical decoupling; XXZ Hamiltonian; ROBUST;
D O I
10.1007/s11467-021-1128-z
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Nonadiabatic geometric quantum computation protected by dynamical decoupling combines the robustness of nonadiabatic geometric gates and the decoherence-resilience feature of dynamical decoupling. Solid-state systems provide an appealing candidate for the realization of nonadiabatic geometric quantum computation protected dynamical decoupling since the solid-state qubits are easily embedded in electronic circuits and scaled up to large registers. In this paper, we put forward a scheme of nonadiabatic geometric quantum computation protected by dynamical decoupling via the XXZ Hamiltonian, which not only combines the merits of nonadiabatic geometric gates and dynamical decoupling but also can be realized in a number of solid-state systems, such as superconducting circuits and quantum dots.
引用
收藏
页数:9
相关论文
共 50 条
  • [21] Nonadiabatic geometric quantum computation with optimal control on superconducting circuits
    Jing Xu
    Sai Li
    Tao Chen
    Zheng-Yuan Xue
    Frontiers of Physics, 2020, 15
  • [22] Dynamical invariants and nonadiabatic geometric phases in open quantum systems
    Sarandy, M. S.
    Duzzioni, E. I.
    Moussa, M. H. Y.
    PHYSICAL REVIEW A, 2007, 76 (05):
  • [23] Nonadiabatic geometric quantum computation in non-Hermitian systems
    Hou, Tian -Xiang
    Li, Wei
    PHYSICAL REVIEW A, 2024, 109 (02)
  • [24] Geometric quantum computation and dynamical invariant operators
    Wang, Z. S.
    PHYSICAL REVIEW A, 2009, 79 (02):
  • [25] Machine-learning-inspired quantum optimal control of nonadiabatic geometric quantum computation via reverse engineering
    Mao, Meng-Yun
    Cheng, Zheng
    Xia, Yan
    Oles, Andrzej M.
    You, Wen-Long
    PHYSICAL REVIEW A, 2023, 108 (03)
  • [26] Twirling and Hamiltonian engineering via dynamical decoupling for Gottesman-Kitaev-Preskill quantum computing
    Conrad, Jonathan
    PHYSICAL REVIEW A, 2021, 103 (02)
  • [27] Nonadiabatic Holonomic Quantum Computation via Path Optimization
    Ji, Li-Na
    Liang, Yan
    Shen, Pu
    Xue, Zheng-Yuan
    PHYSICAL REVIEW APPLIED, 2022, 18 (04)
  • [28] Quantum control via encoded dynamical decoupling
    Viola, L
    PHYSICAL REVIEW A, 2002, 66 (01) : 10
  • [29] Decoherence control via quantum dynamical decoupling
    Lidar, Daniel A.
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2011, 241
  • [30] Rydberg-atom-based scheme of nonadiabatic geometric quantum computation
    Zhao, P. Z.
    Cui, Xiao-Dan
    Xu, G. F.
    Sjoqvist, Erik
    Tong, D. M.
    PHYSICAL REVIEW A, 2017, 96 (05)