Nonadiabatic geometric quantum computation protected by dynamical decoupling via the XXZ Hamiltonian

被引:5
|
作者
Wu, X. [1 ]
Zhao, P. Z. [1 ]
机构
[1] Shandong Univ, Dept Phys, Jinan 250100, Peoples R China
基金
中国博士后科学基金; 中国国家自然科学基金;
关键词
nonadiabatic geometric quantum computation; dynamical decoupling; XXZ Hamiltonian; ROBUST;
D O I
10.1007/s11467-021-1128-z
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Nonadiabatic geometric quantum computation protected by dynamical decoupling combines the robustness of nonadiabatic geometric gates and the decoherence-resilience feature of dynamical decoupling. Solid-state systems provide an appealing candidate for the realization of nonadiabatic geometric quantum computation protected dynamical decoupling since the solid-state qubits are easily embedded in electronic circuits and scaled up to large registers. In this paper, we put forward a scheme of nonadiabatic geometric quantum computation protected by dynamical decoupling via the XXZ Hamiltonian, which not only combines the merits of nonadiabatic geometric gates and dynamical decoupling but also can be realized in a number of solid-state systems, such as superconducting circuits and quantum dots.
引用
收藏
页数:9
相关论文
共 50 条
  • [1] Nonadiabatic geometric quantum computation protected by dynamical decoupling via the XXZ Hamiltonian
    X. Wu
    P. Z. Zhao
    Frontiers of Physics, 2022, 17
  • [2] Nonadiabatic geometric quantum computation protected by dynamical decoupling via the XXZ Hamiltonian
    Wu X.
    Z. Zhao P.
    Frontiers of Physics, 2022, 17 (03)
  • [3] Dynamical-decoupling-protected unconventional nonadiabatic geometric quantum computation
    Wu, Xuan
    Jin, Long-Yi
    Wang, Hong-Fu
    PHYSICA SCRIPTA, 2025, 100 (02)
  • [4] Dynamical-decoupling-protected nonadiabatic holonomic quantum computation
    Zhao, P. Z.
    Wu, X.
    Tong, D. M.
    PHYSICAL REVIEW A, 2021, 103 (01)
  • [5] Quantum computation in silicon-vacancy centers based on nonadiabatic geometric gates protected by dynamical decoupling
    Yun, M. R.
    Wu, Jin-Lei
    Yan, L. L.
    Jia, Yu
    Su, Shi-Lei
    Shan, C. X.
    PHYSICAL REVIEW APPLIED, 2024, 21 (06):
  • [6] Universal nonadiabatic geometric gates protected by dynamical decoupling
    Wu, X.
    Zhao, P. Z.
    PHYSICAL REVIEW A, 2020, 102 (03)
  • [7] Coherence-protected nonadiabatic geometric quantum computation
    Li, K. Z.
    Xu, G. F.
    Tong, D. M.
    PHYSICAL REVIEW RESEARCH, 2021, 3 (02):
  • [8] Dynamical-corrected nonadiabatic geometric quantum computation
    Ding ChengYun
    Chen Li
    Zhang LiHua
    Xue ZhengYuan
    Frontiers of Physics, 2023, 18 (06)
  • [9] Dynamical-corrected nonadiabatic geometric quantum computation
    Ding, Cheng-Yun
    Chen, Li
    Zhang, Li-Hua
    Xue, Zheng-Yuan
    FRONTIERS OF PHYSICS, 2023, 18 (06)
  • [10] Robust nonadiabatic geometric quantum computation by dynamical correction
    Liang, Ming-Jie
    Xue, Zheng-Yuan
    PHYSICAL REVIEW A, 2022, 106 (01)