The microglial lysosomal system in Alzheimer's disease: Guardian against proteinopathy

被引:21
作者
Van Acker, Zoe P. [1 ,2 ]
Perdok, Anika [1 ,2 ]
Bretou, Marine [1 ,2 ]
Annaert, Wim [1 ,2 ]
机构
[1] VIB Ctr Brain & Dis Res, Lab Membrane Trafficking, B-3000 Leuven, Belgium
[2] Katholieke Univ Leuven, Dept Neurosci, B-3000 Leuven, Belgium
基金
比利时弗兰德研究基金会;
关键词
Late-onset Alzheimer's disease; Endolysosomal homeostasis; Microglia; Membrane transport; Phagocytosis; AMYLOID PRECURSOR PROTEIN; TOLL-LIKE RECEPTORS; A-BETA; HUMAN BRAIN; CATHEPSIN-B; ION-CHANNEL; MOUSE MODEL; DEGRADATION; CLEARANCE; PEPTIDE;
D O I
10.1016/j.arr.2021.101444
中图分类号
Q2 [细胞生物学];
学科分类号
071009 ; 090102 ;
摘要
Microglia, the brain-resident immune cells, play an essential role in the upkeep of brain homeostasis. They actively adapt into specific activation states based on cues from the microenvironment. One of these encompasses the activated response microglia (ARMs) phenotype. It arises along a healthy aging process and in a range of neurodegenerative diseases, including Alzheimer's disease (AD). As the phenotype is characterized by an increased lipid metabolism, phagocytosis rate, lysosomal protease content and secretion of neuroprotective agents, it leaves to reason that the phenotype is adapted in an attempt to restore homeostasis. This is important to the conundrum of inflammatory processes. Inflammation per se may not be deleterious; it is only when microglial reactions become chronic or the microglial subtype is made dysfunctional by (multiple) risk proteins with singlenucleotide polymorphisms that microglial involvement becomes deleterious instead of beneficial. Interestingly, the ARMs up- and downregulate many late-onset AD-associated risk factor genes, the products of which are particularly active in the endolysosomal system. Hence, in this review, we focus on how the endolysosomal system is placed at the crossroad of inflammation and microglial capacity to keep pace with degradation.
引用
收藏
页数:18
相关论文
共 163 条
[1]   ABCA7 haplodeficiency disturbs microglial immune responses in the mouse brain [J].
Aikawa, Tomonori ;
Ren, Yingxue ;
Yamazaki, Yu ;
Tachibana, Masaya ;
Johnson, Madeleine R. ;
Anderson, Casey T. ;
Martens, Yuka A. ;
Holm, Marie-Louise ;
Asmann, Yan W. ;
Saito, Takashi ;
Saido, Takaomi C. ;
Fitzgerald, Michael L. ;
Bu, Guojun ;
Kanekiyo, Takahisa .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2019, 116 (47) :23790-23796
[2]   Activated microglia desialylate their surface, stimulating complement receptor 3-mediated phagocytosis of neurons [J].
Allendorf, David H. ;
Puigdellivol, Mar ;
Brown, Guy C. .
GLIA, 2020, 68 (05) :989-998
[3]   Alzheimer's-associated PLCγ2 is a signaling node required for both TREM2 function and the inflammatory response in human microglia [J].
Andreone, Benjamin J. ;
Przybyla, Laralynne ;
Llapashtica, Ceyda ;
Rana, Anil ;
Davis, Sonnet S. ;
van Lengerich, Bettina ;
Lin, Karin ;
Shi, Ju ;
Mei, Yuan ;
Astarita, Giuseppe ;
Di Paolo, Gilbert ;
Sandmann, Thomas ;
Monroe, Kathryn M. ;
Lewcock, Joseph W. .
NATURE NEUROSCIENCE, 2020, 23 (08) :927-+
[4]   Altered Processing of β-Amyloid in SH-SY5Y Cells Induced by Model Senescent Microglia [J].
Angelova, Dafina M. ;
Brown, David R. .
ACS CHEMICAL NEUROSCIENCE, 2018, 9 (12) :3137-3152
[5]   Concerted action of dipeptidyl peptidase IV and glutaminyl cyclase results in formation of pyroglutamate-modified amyloid peptides in vitro [J].
Antonyan, Alvard ;
Schlenzig, Dagmar ;
Schilling, Stephan ;
Naumann, Marcel ;
Sharoyan, Svetlana ;
Mardanyan, Sona ;
Demuth, Hans-Ulrich .
NEUROCHEMISTRY INTERNATIONAL, 2018, 113 :112-119
[6]   Depletion of microglia and inhibition of exosome synthesis halt tau propagation [J].
Asai, Hirohide ;
Ikezu, Seiko ;
Tsunoda, Satoshi ;
Medalla, Maria ;
Luebke, Jennifer ;
Haydar, Tank ;
Wolozin, Benjamin ;
Butovsky, Oleg ;
Kuegler, Sebastian ;
Ikezu, Tsuneya .
NATURE NEUROSCIENCE, 2015, 18 (11) :1584-1593
[7]   Coupled Proliferation and Apoptosis Maintain the Rapid Turnover of Microglia in the Adult Brain [J].
Askew, Katharine ;
Li, Kaizhen ;
Olmos-Alonso, Adrian ;
Garcia-Moreno, Fernando ;
Liang, Yajie ;
Richardson, Philippa ;
Tipton, Tom ;
Chapman, Mark A. ;
Riecken, Kristoffer ;
Beccari, Sol ;
Sierra, Amanda ;
Molnar, Zoltan ;
Cragg, Mark S. ;
Garaschuk, Olga ;
Perry, V. Hugh ;
Gomez-Nicola, Diego .
CELL REPORTS, 2017, 18 (02) :391-405
[8]   Toll-like receptor 4-dependent glial cell activation mediates the impairment in memory establishment induced by β-amyloid oligomers in an acute mouse model of Alzheimer's disease [J].
Balducci, Claudia ;
Frasca, Angelisa ;
Zotti, Margherita ;
La Vitola, Pietro ;
Mhillaj, Emanuela ;
Grigoli, Emanuele ;
Iacobellis, Martina ;
Grandi, Federica ;
Messa, Massimo ;
Colombo, Laura ;
Molteni, Monica ;
Trabace, Luigia ;
Rossetti, Carlo ;
Salmona, Mario ;
Forloni, Gianluigi .
BRAIN BEHAVIOR AND IMMUNITY, 2017, 60 :188-197
[9]   Understanding multifactorial brain changes in type 2 diabetes: a biomarker perspective [J].
Biessels, Geert Jan ;
Nobili, Flavio ;
Teunissen, Charlotte E. ;
Simo, Rafael ;
Scheltens, Philip .
LANCET NEUROLOGY, 2020, 19 (08) :699-710
[10]   PLD3 epigenetic changes in the hippocampus of Alzheimer's disease [J].
Blanco-Luquin, Idoia ;
Altuna, Miren ;
Sanchez-Ruiz de Gordoa, Javier ;
Urdanoz-Casado, Amaya ;
Roldan, Miren ;
Camara, Maria ;
Zelaya, Victoria ;
Elena Erro, Maria ;
Echavarri, Carmen ;
Mendioroz, Maite .
CLINICAL EPIGENETICS, 2018, 10