On the hardness of approximating multicut and sparsest-cut

被引:35
作者
Chawla, S [1 ]
Krauthgamer, R [1 ]
Kumar, R [1 ]
Rabani, Y [1 ]
Sivakumar, D [1 ]
机构
[1] Carnegie Mellon Univ, Dept Comp Sci, Pittsburgh, PA 15213 USA
来源
TWENTIETH ANNUAL IEEE CONFERENCE ON COMPUTATIONAL COMPLEXITY, PROCEEDINGS | 2005年
关键词
D O I
10.1109/CCC.2005.20
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
We show that the MULTICUT, SPARSEST-CUT, and MIN-2CNF- DELETION problems are NP-hard to approximate within every constant factor assuming the Unique Games Conjecture of Khot [STOC, 2002]. A quantitatively stronger version ofthe conjecture implies inapproximability factor of Omega (log log n).
引用
收藏
页码:144 / 153
页数:10
相关论文
共 29 条
[1]  
Agarwal A., 2005, P 37 ANN ACM S THEOR, P573
[2]  
[Anonymous], THESIS U CHICAGO
[3]  
[Anonymous], P 36 ANN ACM S THEOR
[4]   Proof verification and the hardness of approximation problems [J].
Arora, S ;
Lund, C ;
Motwani, R ;
Sudan, M ;
Szegedy, M .
JOURNAL OF THE ACM, 1998, 45 (03) :501-555
[5]   Probabilistic checking of proofs: A new characterization of NP [J].
Arora, S ;
Safra, S .
JOURNAL OF THE ACM, 1998, 45 (01) :70-122
[6]  
ARORA S, 2005, P 37 ANN ACM S THEOR
[7]   An O(log k) approximate min-cut max-flow theorem and approximation algorithm [J].
Aumann, Y ;
Rabani, Y .
SIAM JOURNAL ON COMPUTING, 1998, 27 (01) :291-301
[8]   Correlation clustering [J].
Bansal, N ;
Blum, A ;
Chawla, S .
MACHINE LEARNING, 2004, 56 (1-3) :89-113
[9]   Free bits, PCPs, and nonapproximability - Towards tight results [J].
Bellare, M ;
Goldreich, O ;
Sudan, M .
SIAM JOURNAL ON COMPUTING, 1998, 27 (03) :804-915
[10]  
BEN-OR M., 1990, RANDOMNESS COMPUTATI, P91