Neural network-based nonlinear tracking control of kinematically redundant robot manipulators

被引:58
作者
Kumar, Naveen [1 ]
Panwar, Vikas [2 ]
Sukavanam, N. [3 ]
Sharma, S. P. [3 ]
Borm, J. H. [1 ]
机构
[1] Ajou Univ, Dept Mech Engn, Suwon 443749, South Korea
[2] CDL Univ, Dept Math, Sirsa 125055, Haryana, India
[3] IIT Roorkee, Dept Math, Roorkee 247667, Uttar Pradesh, India
关键词
Redundant manipulators; Feedforward neural network; Lyapunov stability; Subtask tracking; CRITERIA;
D O I
10.1016/j.mcm.2011.01.014
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
In this paper, neural network-based nonlinear dynamical control of kinematically redundant robot manipulators is considered. The neural network-based controller achieves end-effector trajectory tracking as well as subtask tracking effectively. A feedforward neural network is employed to learn the parametric uncertainties, existing in the dynamical model of the robot manipulator. The whole system is shown to be stable in the sense of Lyapunov. Numerical simulation studies are carried out for a 3R planar robot manipulator to show the effectiveness of the control scheme. (C) 2011 Elsevier Ltd. All rights reserved.
引用
收藏
页码:1889 / 1901
页数:13
相关论文
共 21 条
  • [1] [Anonymous], 1999, Neural network control of robot manipulators and nonlinear systems
  • [2] Intelligent control for avoiding the joint limits of redundant planar manipulators
    Assal, Samy
    Watanabe, Keigo
    Izumi, Kiyotaka
    [J]. ARTIFICIAL LIFE AND ROBOTICS, 2006, 10 (02) : 141 - 148
  • [3] Boudec B.L., 2006, MATH COMPUT SIMULAT, V71, P395
  • [4] Adaptive Jacobian tracking control of robots with uncertainties in kinematic, dynamic and actuator models
    Cheah, C. C.
    Liu, C.
    Slotine, J. J. E.
    [J]. IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2006, 51 (06) : 1024 - 1029
  • [5] A neural network adaptive controller for end-effector tracking of redundant robot manipulators
    Daachi, B.
    Benallegue, A.
    [J]. JOURNAL OF INTELLIGENT & ROBOTIC SYSTEMS, 2006, 46 (03) : 245 - 262
  • [6] Generalized neural trees for pattern classification
    Foresti, GL
    Micheloni, C
    [J]. IEEE TRANSACTIONS ON NEURAL NETWORKS, 2002, 13 (06): : 1540 - 1547
  • [7] MULTILAYER FEEDFORWARD NETWORKS ARE UNIVERSAL APPROXIMATORS
    HORNIK, K
    STINCHCOMBE, M
    WHITE, H
    [J]. NEURAL NETWORKS, 1989, 2 (05) : 359 - 366
  • [8] DYNAMIC CONTROL OF REDUNDANT MANIPULATORS
    HSU, P
    HAUSER, J
    SASTRY, S
    [J]. JOURNAL OF ROBOTIC SYSTEMS, 1989, 6 (02): : 133 - 148
  • [9] Khatib O., 1983, IFTOMM CONG THEORY M, P1
  • [10] Multilayer neural-net robot controller with guaranteed tracking performance
    Lewis, FL
    Yesildirek, A
    Liu, K
    [J]. IEEE TRANSACTIONS ON NEURAL NETWORKS, 1996, 7 (02): : 388 - 399