Structural Stability of a Dynamical System Near a Non-Hyperbolic Fixed Point

被引:13
作者
Bauerschmidt, Roland [1 ]
Brydges, David C. [1 ]
Slade, Gordon [1 ]
机构
[1] Univ British Columbia, Dept Math, Vancouver, BC V6T 1Z2, Canada
来源
ANNALES HENRI POINCARE | 2015年 / 16卷 / 04期
关键词
LOGARITHMIC CORRECTIONS; RIGOROUS CONTROL; SPIN SYSTEMS;
D O I
10.1007/s00023-014-0338-0
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We prove structural stability under perturbations for a class of discrete-time dynamical systems near a non-hyperbolic fixed point. We reformulate the stability problem in terms of the well-posedness of an infinite-dimensional nonlinear ordinary differential equation in a Banach space of carefully weighted sequences. Using this, we prove existence and regularity of flows of the dynamical system which obey mixed initial and final boundary conditions. The class of dynamical systems we study, and the boundary conditions we impose, arise in a renormalization group analysis of the 4-dimensional weakly self-avoiding walk and the 4-dimensional n-component |phi|(4) spin model.
引用
收藏
页码:1033 / 1065
页数:33
相关论文
共 15 条
[1]  
Abraham R., 1978, Foundations of Mechanics
[2]  
[Anonymous], ROLAND BAUERSCHMIDT
[3]  
[Anonymous], J STAT PHYS IN PRESS
[4]  
[Anonymous], ARXIV14037422
[5]  
[Anonymous], ARXIV14037268
[6]  
Brydges D., 2011, P INT C MATH HYD 201, P2232
[7]  
Brydges D.C., 2009, IAS/Park City Mathematics Series, V16, P7, DOI [10.1090/pcms/016, DOI 10.1090/PCMS/016]
[8]   CONSTRUCTION AND BOREL SUMMABILITY OF INFRARED PHI-44 BY A PHASE-SPACE EXPANSION [J].
FELDMAN, J ;
MAGNEN, J ;
RIVASSEAU, V ;
SENEOR, R .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1987, 109 (03) :437-480
[9]  
Gawedzki K., 1986, CRITICAL PHENOMENA R
[10]   A RIGOROUS CONTROL OF LOGARITHMIC CORRECTIONS IN 4-DIMENSIONAL PI-4 SPIN SYSTEMS .1. TRAJECTORY OF EFFECTIVE-HAMILTONIANS [J].
HARA, T .
JOURNAL OF STATISTICAL PHYSICS, 1987, 47 (1-2) :57-98