Some applications of higher commutators in Mal'cev algebras

被引:47
作者
Aichinger, Erhard [1 ]
Mudrinski, Nebojsa [2 ]
机构
[1] Johannes Kepler Univ Linz, Inst Algebra, A-4040 Linz, Austria
[2] Univ Novi Sad, Fac Sci, Dept Math & Informat, Novi Sad 21000, Serbia
关键词
commutator theory; congruence lattice; Mal'cev algebras; polynomial function; EQUIVALENCE; COMPLEXITY; RINGS;
D O I
10.1007/s00012-010-0084-1
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We establish several properties of Bulatov's higher commutator operations in congruence permutable varieties. We use higher commutators to prove that for a finite nilpotent algebra of finite type that is a product of algebras of prime power order and generates a congruence modular variety, affine completeness is a decidable property. Moreover, we show that in such algebras, we can check in polynomial time whether two given polynomial terms induce the same function.
引用
收藏
页码:367 / 403
页数:37
相关论文
共 19 条
[1]   Every (k+1)-affine complete nilpotent group of class k is affine complete [J].
Aichincer, E ;
Ecker, J .
INTERNATIONAL JOURNAL OF ALGEBRA AND COMPUTATION, 2006, 16 (02) :259-274
[2]   Polynomial clones on groups of order pq [J].
Aichinger, E. ;
Mayr, P. .
ACTA MATHEMATICA HUNGARICA, 2007, 114 (03) :267-285
[3]  
Aichinger E., 2006, Contributions to general algebra, V17, P9
[4]  
Bulatov A., 2001, Contributions to general algebra, 13 (Velke Karlovice, 1999/Dresden, 2000), V13, P41
[5]  
Bulatov A. A., 2002, Mult.-Valued Log., V8, P193
[6]   THE EQUIVALENCE PROBLEM FOR FINITE RINGS [J].
BURRIS, S ;
LAWRENCE, J .
JOURNAL OF SYMBOLIC COMPUTATION, 1993, 15 (01) :67-71
[7]  
Burris S., 1981, GRADUATE TEXTS MATH
[8]  
Freese R., 1987, Commutator Theory for Congruence Modular Varieties, London Mathematical Society Lecture Note Series
[9]   The complexity of solving equations over finite groups [J].
Goldmann, M ;
Russell, A .
INFORMATION AND COMPUTATION, 2002, 178 (01) :253-262
[10]   IDEALS IN UNIVERSAL-ALGEBRAS [J].
GUMM, HP ;
URSINI, A .
ALGEBRA UNIVERSALIS, 1984, 19 (01) :45-54