Negatively Charged Excitons in CdSe Nanoplatelets

被引:64
作者
Shornikova, Elena V. [1 ]
Yakovlev, Dmitri R. [1 ,2 ]
Biadala, Louis [3 ]
Crooker, Scott A. [4 ]
Belykh, Vasilii V. [5 ]
Kochiev, Mikhail V. [5 ]
Kuntzmann, Alexis [6 ]
Nasilowski, Michel [6 ]
Dubertret, Benoit [6 ]
Bayer, Manfred [1 ,2 ]
机构
[1] Tech Univ Dortmund, Expt Phys 2, D-44221 Dortmund, Germany
[2] Russian Acad Sci, Ioffe Inst, St Petersburg 194021, Russia
[3] CNRS, Inst Elect Microelect & Nanotechnol, F-59652 Villeneuve Dascq, France
[4] Los Alamos Natl Lab, Natl High Magnet Field Lab, Los Alamos, NM 87545 USA
[5] Russian Acad Sci, PN Lebedev Phys Inst, Moscow 119991, Russia
[6] CNRS, ESPCI, Lab Phys & Etud Mat, F-75231 Paris, France
基金
俄罗斯科学基金会; 俄罗斯基础研究基金会; 美国国家科学基金会;
关键词
Colloidal nanocrystal; CdSe nanoplatelet; charged exciton; trion; high magnetic fields; AUGER RECOMBINATION; COLLOIDAL NANOPLATELETS; COULOMB INTERACTION; QUANTUM DOTS; SEMICONDUCTOR; SINGLE; INTERFACE; ELECTRON; DYNAMICS;
D O I
10.1021/acs.nanolett.9b04907
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
The low-temperature emission spectrum of CdSe colloidal nanoplatelets (NPLs) consists of two narrow lines. The high-energy line stems from the recombination of neutral excitons. The origin of the low-energy line is currently debated. We experimentally study the spectral shift, emission dynamics, and spin polarization of both lines at low temperatures down to 1.5 K and in high magnetic fields up to 60 T and show that the low-energy line originates from the recombination of negatively charged excitons (trions). This assignment is confirmed by the NPL photocharging dynamics and associated variations in the spectrum. We show that the negatively charged excitons are considerably less sensitive to the presence of surface spins than the neutral excitons. The trion binding energy in three-monolayer-thick NPLs is as large as 30 meV, which is 4 times larger than its value in the two-dimensional limit of a conventional CdSe quantum well confined between semiconductor barriers. A considerable part of this enhancement is gained by the dielectric enhancement effect, which is due to the small dielectric constant of the environment surrounding the NPLs.
引用
收藏
页码:1370 / 1377
页数:8
相关论文
共 39 条
[1]   p-State Luminescence in CdSe Nanoplatelets: Role of Lateral Confinement and a Longitudinal Optical Phonon Bottleneck [J].
Achtstein, Alexander W. ;
Scott, Riccardo ;
Kickhoefel, Sebastian ;
Jagsch, Stefan T. ;
Christodoulou, Sotirios ;
Bertrand, Guillaume H. V. ;
Prudnikau, Anatol V. ;
Antanovich, Artsiom ;
Artemyev, Mikhail ;
Moreels, Iwan ;
Schliwa, Andrei ;
Woggon, Ulrike .
PHYSICAL REVIEW LETTERS, 2016, 116 (11)
[2]   Observation of Electron Shakeup in CdSe/CdS Core/Shell Nanoplatelets [J].
Antolinez, Felipe V. ;
Rabouw, Freddy T. ;
Rossinelli, Aurelio A. ;
Cui, Jian ;
Norris, David J. .
NANO LETTERS, 2019, 19 (12) :8495-8502
[3]   Controlled Alloying of the Core-Shell Interface in CdSe/CdS Quantum Dots for Suppression of Auger Recombination [J].
Bae, Wan Ki ;
Padilha, Lazaro A. ;
Park, Young-Shin ;
McDaniel, Hunter ;
Robel, Istvan ;
Pietryga, Jeffrey M. ;
Klimov, Victor I. .
ACS NANO, 2013, 7 (04) :3411-3419
[4]   Tight-binding calculations of image-charge effects in colloidal nanoscale platelets of CdSe [J].
Benchamekh, R. ;
Gippius, N. A. ;
Even, J. ;
Nestoklon, M. O. ;
Jancu, J. -M. ;
Ithurria, S. ;
Dubertret, B. ;
Efros, Al. L. ;
Voisin, P. .
PHYSICAL REVIEW B, 2014, 89 (03)
[5]   Recombination Dynamics of Band Edge Excitons in Quasi-Two-Dimensional CdSe Nanoplatelets [J].
Biadala, Louis ;
Liu, Feng ;
Tessier, Mickael D. ;
Yakovlev, Dmitri R. ;
Dubertret, Benoit ;
Bayer, Manfred .
NANO LETTERS, 2014, 14 (03) :1134-1139
[6]   Lifetime and polarization of the radiative decay of excitons, biexcitons, and trions in CdSe nanocrystal quantum dots [J].
Califano, Marco ;
Franceschetti, Alberto ;
Zunger, Alex .
PHYSICAL REVIEW B, 2007, 75 (11)
[7]   Anisotropy of electron-phonon interaction in nanoscale CdSe platelets as seen via off-resonant and resonant Raman spectroscopy [J].
Cherevkov, S. A. ;
Fedorov, A. V. ;
Artemyev, M. V. ;
Prudnikau, A. V. ;
Baranov, A. V. .
PHYSICAL REVIEW B, 2013, 88 (04)
[8]   Charged excitons in monolayer WSe2: Experiment and theory [J].
Courtade, E. ;
Semina, M. ;
Manca, M. ;
Glazov, M. M. ;
Robert, C. ;
Cadiz, F. ;
Wang, G. ;
Taniguchi, T. ;
Watanabe, K. ;
Pierre, M. ;
Escoffier, W. ;
Ivchenko, E. L. ;
Renucci, P. ;
Marie, X. ;
Amand, T. ;
Urbaszek, B. .
PHYSICAL REVIEW B, 2017, 96 (08)
[9]   Semiconductor Nanoplatelet Excimers [J].
Diroll, Benjamin T. ;
Cho, Wooje ;
Coropceanu, Igor ;
Harvey, Samantha M. ;
Brumberg, Alexandra ;
Holtgrewe, Nicholas ;
Crooker, Scott A. ;
Wasielewski, Michael R. ;
Prakapenka, Vitali B. ;
Talapin, Dmitri V. ;
Schaller, Richard D. .
NANO LETTERS, 2018, 18 (11) :6948-6953
[10]  
Efros AL, 2016, NAT NANOTECHNOL, V11, P661, DOI [10.1038/nnano.2016.140, 10.1038/NNANO.2016.140]