Anti-De Sitter Spacetimes and Isoparametric Hypersurfaces in Complex Hyperbolic Spaces

被引:0
作者
Carlos Diaz-Ramos, J. [1 ]
Dominguez-Vazquez, Miguel [2 ]
Sanmartin-Lopez, Victor [1 ]
机构
[1] Univ Santiago de Compostela, Dept Math, Santiago, Spain
[2] ICMAT Inst Ciencias Matemat CSIC UAM UC3M UCM, Madrid, Spain
来源
LORENTZIAN GEOMETRY AND RELATED TOPICS, GELOMA 2016 | 2017年 / 211卷
基金
欧盟地平线“2020”;
关键词
Complex hyperbolic space; Isoparametric hypersurface; Kahler angle; Anti-De Sitter spacetime; COHOMOGENEITY ONE ACTIONS;
D O I
10.1007/978-3-319-66290-9_6
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
By lifting hypersurfaces in complex hyperbolic spaces to anti-De Sitter spacetimes, we prove that an isoparametric hypersurface in the complex hyperbolic space has the same principal curvatures as a homogeneous one.
引用
收藏
页码:87 / 101
页数:15
相关论文
共 18 条
  • [1] Berndt J, 2001, J REINE ANGEW MATH, V541, P209
  • [2] Cohomogeneity one actions on noncompact symmetric spaces of rank one
    Berndt, Juergen
    Tamaru, Hiroshi
    [J]. TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2007, 359 (07) : 3425 - 3438
  • [3] Homogeneous hypersurfaces in complex hyperbolic spaces
    Berndt, Juergen
    Diaz-Ramos, Jose Carlos
    [J]. GEOMETRIAE DEDICATA, 2009, 138 (01) : 129 - 150
  • [4] Isoparametric hypersurfaces in complex hyperbolic spaces
    Carlos Diaz-Ramos, Jose
    Dominguez-Vazquez, Miguel
    Sanmartin-Lopez, Victor
    [J]. ADVANCES IN MATHEMATICS, 2017, 314 : 756 - 805
  • [5] Inhomogeneous isoparametric hypersurfaces in complex hyperbolic spaces
    Carlos Diaz-Ramos, Jose
    Dominguez-Vazquez, Miguel
    [J]. MATHEMATISCHE ZEITSCHRIFT, 2012, 271 (3-4) : 1037 - 1042
  • [6] Cartan E., 1938, Ann. Mat. Pura Appl., V17, P177
  • [7] Chi QS, 2013, J DIFFER GEOM, V94, P469
  • [8] Domínguez-Vázquez M, 2016, T AM MATH SOC, V368, P1211
  • [9] CLIFFORD ALGEBRAS AND NEW ISOPARAMETRIC HYPERSURFACES
    FERUS, D
    KARCHER, H
    MUNZNER, HF
    [J]. MATHEMATISCHE ZEITSCHRIFT, 1981, 177 (04) : 479 - 502
  • [10] ISOPARAMETRIC HYPERSURFACES IN THE PSEUDO-RIEMANNIAN SPACE-FORMS
    HAHN, J
    [J]. MATHEMATISCHE ZEITSCHRIFT, 1984, 187 (02) : 195 - 208