Enabling fast charging - A battery technology gap assessment

被引:396
作者
Ahmed, Shabbir [1 ]
Bloom, Ira [1 ]
Jansen, Andrew N. [1 ]
Tanim, Tanvir [2 ]
Dufek, Eric J. [2 ]
Pesaran, Ahmad [3 ]
Burnham, Andrew [1 ]
Carlson, Richard B. [2 ]
Dias, Fernando [2 ]
Hardy, Keith [1 ]
Keyser, Matthew [3 ]
Kreuzer, Cory [3 ]
Markel, Anthony [3 ]
Meintz, Andrew [3 ]
Michelbacher, Christopher [2 ]
Mohanpurkar, Manish [2 ]
Nelson, Paul A. [1 ]
Robertson, David. C. [1 ]
Scoffield, Don [2 ]
Shirk, Matthew [2 ]
Stephens, Thomas [1 ]
Vijayagopal, Ram [1 ]
Zhang, Jiucai [3 ]
机构
[1] Argonne Natl Lab, 9700 South Cass Ave, Argonne, IL 60439 USA
[2] Idaho Natl Lab, 2525 N Fremont, Idaho Falls, ID 83415 USA
[3] Natl Renewable Energy Lab, 15013 Denver West Pkwy, Golden, CO 80401 USA
关键词
Lithium-ion battery; Extreme fast charging; Developmental needs; LITHIUM-ION BATTERY; IN-SITU DETECTION; LI-ION; ANODE MATERIALS; LOW-TEMPERATURE; ELECTROCHEMICAL PERFORMANCE; NEGATIVE ELECTRODES; STRESS GENERATION; CATHODE MATERIAL; CYCLE LIFE;
D O I
10.1016/j.jpowsour.2017.06.055
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The battery technology literature is reviewed, with an emphasis on key elements that limit extreme fast charging. Key gaps in existing elements of the technology are presented as well as developmental needs. Among these needs are advanced models and methods to detect and prevent lithium plating; new positive-electrode materials which are less prone to stress-induced failure; better electrode designs to accommodate very rapid diffusion in and out of the electrode; measure temperature distributions during fast charge to enable/validate models; and develop thermal management and pack designs to accommodate the higher operating voltage. (C) 2017 Elsevier B.V. All rights reserved.
引用
收藏
页码:250 / 262
页数:13
相关论文
共 82 条
[1]   Probing the Thermal Implications in Mechanical Degradation of Lithium-Ion Battery Electrodes [J].
An, Kai ;
Barai, Pallab ;
Smith, Kandler ;
Mukherjee, Partha P. .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2014, 161 (06) :A1058-A1070
[2]  
[Anonymous], 2015, BATT TEST MAN EL VEH
[3]  
[Anonymous], 2016, INF GATH M GOLD CO S
[4]   Fast charging technique for high power lithium iron phosphate batteries: A cycle life analysis [J].
Ansean, D. ;
Gonzalez, M. ;
Viera, J. C. ;
Garcia, V. M. ;
Blanco, C. ;
Valledor, M. .
JOURNAL OF POWER SOURCES, 2013, 239 :9-15
[5]   Mathematical modeling of the lithium deposition overcharge reaction in lithium-ion batteries using carbon-based negative electrodes [J].
Arora, P ;
Doyle, M ;
White, RE .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 1999, 146 (10) :3543-3553
[6]   Review of selected electrode-solution interactions which determine the performance of Li and Li ion batteries [J].
Aurbach, D .
JOURNAL OF POWER SOURCES, 2000, 89 (02) :206-218
[7]   A short review of failure mechanisms of lithium metal and lithiated graphite anodes in liquid electrolyte solutions [J].
Aurbach, D ;
Zinigrad, E ;
Cohen, Y ;
Teller, H .
SOLID STATE IONICS, 2002, 148 (3-4) :405-416
[8]   On the behavior of different types of graphite anodes [J].
Aurbach, D ;
Teller, H ;
Koltypin, M ;
Levi, E .
JOURNAL OF POWER SOURCES, 2003, 119 :2-7
[9]   Excellent long-term cycling stability of La-doped Li4Ti5O12 anode material at high current rates [J].
Bai, Yu-Jun ;
Gong, Chen ;
Qi, Yong-Xin ;
Lun, Ning ;
Feng, Jun .
JOURNAL OF MATERIALS CHEMISTRY, 2012, 22 (36) :19054-19060
[10]  
Bensenhard J. O., 1990, SOLID STATE IONICS, V40, P525