Adriamycin (ADR), a well-known antitumoral drug, interacts with DNA (nuclear and mitochondrial) and cardiolipin. Moreover, ADR induces numerous mitochondrial modifications in sensitive cells. However, no results have yet been obtained as to the repercussions of drug effects on oxido-reductase activities in ADR-resistant cells. To analyze mitochondrial damage induced by ADR treatment, we investigated lactate content, oxygen consumption, respiratory chain activities, and cytochrome content in ADR-sensitive K562 cells and two ADR-resistant variants (K562/R0.2 and K562/R0.5 cells). Biochemical investigations in ADR-resistant cells showed several mitochondrial modifications (in comparison to the parental cell line) according to the variant line and the physiologic state. More particularly, in K562/R0.5 cells cytochrome c (cyt c) oxidase (COX; EC 1.9.3.1) activity and cytochrome aa3 content dramatically decreased since cells enter into the stationary phase. Regardless of the number of multidrug-resistant. cell subcultures in ADR-free medium, the cytochrome c oxidase activity in the stationary phase remained unchanged, indicating an irreversible effect of the drug. These alterations could correspond to several modifications of the nuclear and/or mitochondrial genome(s) following acquisition of the ADR resistance phenotype by K562 cells. BIOCHEM PHARMACOL 56;4: 451-457, 1998. (C) 1998 Elsevier Science Inc.