Effects of acceptors on the electronic and optoelectronic properties of fluorene-based donor-acceptor-donor copolymers

被引:62
作者
Lee, Wen-Ya
Cheng, Kai-Fang
Wang, Then-Fu
Chueh, Chu-Chen
Chen, Wen-Chang [1 ]
Tuan, Chih-Shen
Lin, Jen-Lien
机构
[1] Ind Technol Res Inst, Mat & Chem Res Labs, Hsinchu 300, Taiwan
[2] Natl Taiwan Univ, Dept Chem Engn, Taipei 106, Taiwan
[3] Natl Taiwan Univ, Inst Polymer Sci & Engn, Taipei 106, Taiwan
关键词
charge transport; conjugated polymers; fluorine acceptors; intramolecular charge transfer; photophysics;
D O I
10.1002/macp.200700158
中图分类号
O63 [高分子化学(高聚物)];
学科分类号
070305 ; 080501 ; 081704 ;
摘要
In this study, four fluorene-based conjugated copolymers were synthesized to explore the acceptor effects on the electronic and optoelectronic properties. The studied polymers were poly{[2,7-(9,9-dihexylfluorene)]-alt-[2,2':5,2 ''-terthiophene]} (PFTT) and its derivatives of poly{ [2,7(9,9'-dihexylfluorene)]-alt-[2,3-dimethyl-5,7-dithien-2-yl-quinoxaline]} (PFDDTO), poly{[2,7-(9,9'-dihexylfluorene)]-alt-[4,7-dithien-2-yl-2,1,3-benzothiadiazole]} (PFDTBT), and poly{[2,7-(9,9'dihexylfluorene)]-alt-[2,3-dimethyl-5,7-dithien-2-yl-thieno[3,4-b]pyrazine]} (PFDDTTP) with the acceptors of quinoxaline (Q), 2,1,3-benzothiadiazole (BT), and thieno[3,4-b]pyrazine (TP), respectively. The order of the band gap was PFDTTP < PFDTBT < PFDDTO < PFTT, which was on the reverse trend of emission maximum and field-effect transistor (FET) mobility. The strong acceptor strength of the TP moiety and coplanar backbone in PFDTTP resulted in the highest intramolecular charge transfer (ICT) among the four polymers. The FET mobility of PFDTTP could be varied by two orders of magnitude through the solvent quality. The present study suggested the importance of the acceptor structure on the electronic and optoelectronic properties of semiconducting polymers.
引用
收藏
页码:1919 / 1927
页数:9
相关论文
共 43 条
[1]   Electrochemical and optical studies of the band gaps of alternating polyfluorene copolymers [J].
Admassie, Shimelis ;
Inganas, Olle ;
Mammo, Wendimagegn ;
Perzon, Erik ;
Andersson, Mats R. .
SYNTHETIC METALS, 2006, 156 (7-8) :614-623
[2]   Substituted polythiophenes designed for optoelectronic devices and conductors [J].
Andersson, MR ;
Thomas, O ;
Mammo, W ;
Svensson, M ;
Theander, M ;
Inganäs, O .
JOURNAL OF MATERIALS CHEMISTRY, 1999, 9 (09) :1933-1940
[3]  
Asawapirom U, 2002, SYNTHESIS-STUTTGART, P1136
[4]   Ambipolar charge transport in air-stable polymer blend thin-film transistors [J].
Babel, A ;
Wind, JD ;
Jenekhe, SA .
ADVANCED FUNCTIONAL MATERIALS, 2004, 14 (09) :891-898
[5]   Dispersive electron transport in an electroluminescent polyfluorene copolymer measured by the current integration time-of-flight method [J].
Campbell, AJ ;
Bradley, DDC ;
Antoniadis, H .
APPLIED PHYSICS LETTERS, 2001, 79 (14) :2133-2135
[6]   Extended photocurrent spectrum of a low band gap polymer in a bulk heterojunction solar cell [J].
Campos, LM ;
Tontcheva, A ;
Günes, S ;
Sonmez, G ;
Neugebauer, H ;
Sariciftci, NS ;
Wudl, F .
CHEMISTRY OF MATERIALS, 2005, 17 (16) :4031-4033
[7]   Electronic properties and field-effect transistors of thiophene-based donor-acceptor conjugated copolymers [J].
Champion, RD ;
Cheng, KF ;
Pai, CL ;
Chen, WC ;
Jenekhe, SA .
MACROMOLECULAR RAPID COMMUNICATIONS, 2005, 26 (23) :1835-1840
[8]   Enhanced mobility of poly(3-hexylthiophene) transistors by spin-coating from high-boiling-point solvents [J].
Chang, JF ;
Sun, BQ ;
Breiby, DW ;
Nielsen, MM ;
Sölling, TI ;
Giles, M ;
McCulloch, I ;
Sirringhaus, H .
CHEMISTRY OF MATERIALS, 2004, 16 (23) :4772-4776
[9]   High carrier mobility in low band gap polymer-based field-effect transistors -: art. no. 252105 [J].
Chen, MX ;
Crispin, X ;
Perzon, E ;
Andersson, MR ;
Pullerits, T ;
Andersson, M ;
Inganäs, O ;
Berggren, M .
APPLIED PHYSICS LETTERS, 2005, 87 (25) :1-3
[10]   SMALL-BANDGAP CONDUCTING POLYMERS-BASED ON CONJUGATED POLY(HETEROARYLENE METHINES) .2. SYNTHESIS, STRUCTURE, AND PROPERTIES [J].
CHEN, WC ;
JENEKHE, SA .
MACROMOLECULES, 1995, 28 (02) :465-480