A 5.7 mW, UWB LNA for Wireless Applications Using Noise Canceling Technique in 90 nm CMOS

被引:1
作者
Singh, Vikram [1 ,2 ]
Arya, Sandeep Kumar [1 ]
Kumar, Manoj [3 ]
机构
[1] Guru Jambheshwar Univ Sci & Technol, Dept Elect & Commun Engn, GJUS&T Hisar, TB-7, Hisar 125001, Haryana, India
[2] Shri Mata Vaishno Devi Univ, Dept Elect & Commun Engn, Katra 182320, Jammu & Kashmir, India
[3] Guru Gobind Singh Indraprastha Univ, Univ Sch Informat Commun & Technol, New Delhi 110078, India
关键词
common-gate; low noise amplifier; noise canceling; UWB; wireless communication; WIDE-BAND LNA; RESISTIVE-FEEDBACK LNA; DISTRIBUTED-AMPLIFIERS; DESIGN; INDUCTOR;
D O I
10.1515/freq-2019-0051
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
A 3-12 GHz ultra-wideband (UWB) low noise amplifier (LNA) is proposed in this paper. The first stage common-gate (CG), common-source (CS) noise canceling approach is used to achieve low noise-figure (NF). CG configuration at the input stage provides wideband input-matching. The noise of CG transistor is cancelled by systematically added two parallel CS transistors, whose outputs are cascoded in second stage. In order to achieve flat power gain (S-21) response, a series peaking inductor is used in the second stage. The proposed LNA is designed in 90 nm CMOS process with chip-layout area of 0.467 mm(2) and in comparison to the existing LNAs, it consumes a low power of 5.7 mW from a 1 V supply. The achieved input-reflection coefficient (S-11) is <-7.5 dB, output-reflection coefficient (S-22) is <-7.6 dB with NF < 5.8 dB for 3-12 GHz UWB and third-order intercept point (IIP3) of -19 dBm. It achieves high and flat S-21 of 20.84 +/- 0.28 dB over 4.2-10 GHz, with NF ranging from 2.6-3.6 dB.
引用
收藏
页码:83 / 93
页数:11
相关论文
共 30 条
[1]  
[Anonymous], 2002, 1 REPORT ORDER DOCKE, P98
[2]   Wideband and multiband CMOS LNAs: State-of-the-art and future prospects [J].
Arshad, S. ;
Zafar, F. ;
Ramzan, R. ;
Wahab, Q. .
MICROELECTRONICS JOURNAL, 2013, 44 (09) :774-786
[3]   A sub-10mW, noise cancelling, wideband LNA for UWB applications [J].
Arshad, Sana ;
Ramzan, Rashad ;
Muhammad, Khurram ;
Wahab, Qamar-ul .
AEU-INTERNATIONAL JOURNAL OF ELECTRONICS AND COMMUNICATIONS, 2015, 69 (01) :109-118
[4]   Noise canceling LNA with gain enhancement by using double feedback [J].
Bastos, I. ;
Oliveira, L. B. ;
Goes, J. ;
Oliveira, J. P. ;
Silva, M. .
INTEGRATION-THE VLSI JOURNAL, 2016, 52 :309-315
[5]  
Blaakmeer S. C., 2006, IEEE RAD FREQ INT CI, DOI [10.1109/RFIC/.2006.1651110, DOI 10.1109/RFIC/.2006.1651110]
[6]   ESD-protected wideband CMOS LNAs using modified resistive feedback techniques with chip-on-board packaging [J].
Chang, Tienyu ;
Chen, Jinghong ;
Rigge, Lawrence A. ;
Lin, Jenshan .
IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, 2008, 56 (08) :1817-1826
[7]   Analysis and Design of a 1.6-28-GHz Compact Wideband LNA in 90-nm CMOS Using a π-Match Input Network [J].
Chen, Hsien-Ku ;
Lin, Yo-Sheng ;
Lu, Shey-Shi .
IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, 2010, 58 (08) :2092-2104
[8]   A 3.1-10.6GHz high linear Low Noise Amplifier for Ultra-wideband Receivers [J].
Du, Sichun ;
Wang, Chunhua ;
Shi, Xiangyue ;
Guo, Shenqiang .
FREQUENZ, 2010, 64 (1-2) :10-13
[9]   3-10 GHz self-biased resistive-feedback LNA with inductive source degeneration [J].
Feng, C. ;
Yu, X. P. ;
Lu, Z. H. ;
Lim, W. M. ;
Sui, W. Q. .
ELECTRONICS LETTERS, 2013, 49 (06) :387-388
[10]   Low-power-consumption and high-gain CMOS distributed amplifiers using cascade of inductively coupled common-source gain cells for UWB systems [J].
Guan, Xin ;
Nguyen, Cam .
IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, 2006, 54 (08) :3278-3283