Anti-CRISPR proteins targeting the CRISPR-Cas system enrich the toolkit for genetic engineering

被引:19
作者
Liu, Qiong [1 ]
Zhang, Hongxia [1 ]
Huang, Xiaotian [1 ,2 ]
机构
[1] Nanchang Univ, Sch Med, Dept Med Microbiol, Nanchang 330006, Jiangxi, Peoples R China
[2] Nanchang Univ, Sch Med, Key Lab Tumor Pathogenesis & Mol Pathol, Nanchang, Jiangxi, Peoples R China
基金
中国国家自然科学基金;
关键词
anti-CRISPR proteins; Cas9; CRISPR-Cas; phage; VIRAL SUPPRESSORS; STRUCTURE REVEALS; ESCHERICHIA-COLI; STRUCTURAL BASIS; INHIBITION; RNA; GENOME; BACTERIOPHAGE; MECHANISMS; DNA;
D O I
10.1111/febs.15139
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Clustered regularly interspaced short palindromic repeats (CRISPR)-Cas adaptive immune defense systems, which are widely distributed in bacteria and Archaea, can provide sequence-specific protection against foreign DNA or RNA in some cases. However, the evolution of defense systems in bacterial hosts did not lead to the elimination of phages, and some phages carry anti-CRISPR genes that encode products that bind to the components mediating the defense mechanism and thus antagonize CRISPR-Cas immune systems of bacteria. Given the extensive application of CRISPR-Cas9 technologies in gene editing, in this review, we focus on the anti-CRISPR proteins (Acrs) that inhibit CRISPR-Cas systems for gene editing. We describe the discovery of Acrs in immune systems involving type I, II, and V CRISPR-Cas immunity, discuss the potential function of Acrs in inactivating type II and V CRISPR-Cas systems for gene editing and gene modulation, and provide an outlook on the development of important biotechnology tools for genetic engineering using Acrs.
引用
收藏
页码:626 / 644
页数:19
相关论文
共 118 条
[1]   Structural basis of PAM-dependent target DNA recognition by the Cas9 endonuclease [J].
Anders, Carolin ;
Niewoehner, Ole ;
Duerst, Alessia ;
Jinek, Martin .
NATURE, 2014, 513 (7519) :569-+
[2]   Rationally Designed Small Nucleic Acid-Based Inhibitors of CRISPR-Cas9 [J].
Barkau, Christopher L. ;
O'Reilly, Daniel ;
Rohilla, Kushal J. ;
Damha, Masad J. ;
Gagnon, Keith T. .
NUCLEIC ACID THERAPEUTICS, 2019, 29 (03) :136-147
[3]   CRISPR provides acquired resistance against viruses in prokaryotes [J].
Barrangou, Rodolphe ;
Fremaux, Christophe ;
Deveau, Helene ;
Richards, Melissa ;
Boyaval, Patrick ;
Moineau, Sylvain ;
Romero, Dennis A. ;
Horvath, Philippe .
SCIENCE, 2007, 315 (5819) :1709-1712
[4]   Applications of CRISPR technologies in research and beyond [J].
Barrangou, Rodolphe ;
Doudna, Jennifer A. .
NATURE BIOTECHNOLOGY, 2016, 34 (09) :933-941
[5]   Gene drive inhibition by the anti-CRISPR proteins AcrIIA2 and AcrIIA4 in Saccharomyces cerevisiae [J].
Basgall, Erianna M. ;
Goetting, Samantha C. ;
Goeckel, Megan E. ;
Giersch, Rachael M. ;
Roggenkamp, Emily ;
Schrock, Madison N. ;
Halloran, Megan ;
Finnigan, Gregory C. .
MICROBIOLOGY-SGM, 2018, 164 (04) :464-474
[6]   Inhibition of Type III CRISPR-Cas Immunity by an Archaeal Virus-Encoded Anti-CRISPR Protein [J].
Bhoobalan-Chitty, Yuvaraj ;
Johansen, Thomas Baek ;
Di Cianni, Nadia ;
Peng, Xu .
CELL, 2019, 179 (02) :448-+
[7]   CRISPR Interference Can Prevent Natural Transformation and Virulence Acquisition during In Vivo Bacterial Infection [J].
Bikard, David ;
Hatoum-Aslan, Asma ;
Mucida, Daniel ;
Marraffini, Luciano A. .
CELL HOST & MICROBE, 2012, 12 (02) :177-186
[8]   Innate and adaptive immunity in bacteria: mechanisms of programmed genetic variation to fight bacteriophages [J].
Bikard, David ;
Marraffini, Luciano A. .
CURRENT OPINION IN IMMUNOLOGY, 2012, 24 (01) :15-20
[9]   Bacteriophage genes that inactivate the CRISPR/Cas bacterial immune system [J].
Bondy-Denomy, Joe ;
Pawluk, April ;
Maxwell, Karen L. ;
Davidson, Alan R. .
NATURE, 2013, 493 (7432) :429-U181
[10]   Protein Inhibitors of CRISPR-Cas9 [J].
Bondy-Denomy, Joseph .
ACS CHEMICAL BIOLOGY, 2018, 13 (02) :417-423