Prediction of future observations using belief functions: A likelihood-based approach

被引:32
作者
Kanjanatarakul, Orakanya [1 ,2 ]
Denoeux, Thierry [2 ]
Sriboonchitta, Songsak [3 ]
机构
[1] Chiang Mai Rajabhat Univ, Fac Management Sci, Chiang Mai, Thailand
[2] Univ Technol Compiegne, Univ Paris 04, CNRS, UMR Heudiasyc 7253, Compiegne, France
[3] Chiang Mai Univ, Fac Econ, Chiang Mai, Thailand
关键词
Dempster-Shafer theory; Evidence theory; Statistical inference; Forecasting; REGRESSION-ANALYSIS; IMPRECISE; UNCERTAIN; SETS;
D O I
10.1016/j.ijar.2015.12.004
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
We study a new approach to statistical prediction in the Dempster-Shafer framework. Given a parametric model, the random variable to be predicted is expressed as a function of the parameter and a pivotal random variable. A consonant belief function in the parameter space is constructed from the likelihood function, and combined with the pivotal distribution to yield a predictive belief function that quantifies the uncertainty about the future data. The method boils down to Bayesian prediction when a probabilistic prior is available. The asymptotic consistency of the method is established in the iid case, under some assumptions. The predictive belief function can be approximated to any desired accuracy using Monte Carlo simulation and nonlinear optimization. As an illustration, the method is applied to multiple linear regression. (C) 2015 Elsevier Inc. All rights reserved.
引用
收藏
页码:71 / 94
页数:24
相关论文
共 67 条
[1]   Connecting Dempster-Shafer belief functions with likelihood-based inference [J].
Aickin, M .
SYNTHESE, 2000, 123 (03) :347-364
[2]  
Almond R.G., 1995, GRAPHICAL BELIEF MOD
[3]  
[Anonymous], 1992, UAI 92
[4]  
[Anonymous], 1986, INT J INTELL SYST
[5]  
[Anonymous], 2006, INTRO RANDOM SETS
[6]  
Aregui A, 2007, ISIPTA 07-PROCEEDINGS OF THE FIFTH INTERNATIONAL SYMPOSIUM ON IMPRECISE PROBABILITY:THEORIES AND APPLICATIONS, P11
[7]   Constructing consonant belief functions from sample data using confidence sets of pignistic probabilities [J].
Aregui, Astride ;
Denoeux, Thierry .
INTERNATIONAL JOURNAL OF APPROXIMATE REASONING, 2008, 49 (03) :575-594
[8]  
BARNARD GA, 1962, J R STAT SOC SER A-G, V125, P321, DOI 10.2307/2982406
[9]   Combining statistical and expert evidence using belief functions: Application to centennial sea level estimation taking into account climate change [J].
Ben Abdallah, N. ;
Mouhous-Voyneau, N. ;
Denoeux, T. .
INTERNATIONAL JOURNAL OF APPROXIMATE REASONING, 2014, 55 (01) :341-354
[10]  
BERGER J.O, 1994, Test, V3, P5, DOI DOI 10.1007/BF02562676