Numerical simulation of anomalous infiltration in porous media

被引:21
作者
Shen, S. [1 ]
Liu, F. [2 ]
Liu, Q. [3 ]
Anh, V. [2 ]
机构
[1] Huaqiao Univ, Sch Math Sci, Quanzhou, Fujian, Peoples R China
[2] Queensland Univ Technol, Sch Math Sci, Brisbane, Qld 4001, Australia
[3] Xiamen Univ, Sch Math Sci, Xiamen 361005, Peoples R China
基金
澳大利亚研究理事会; 中国国家自然科学基金;
关键词
Anomalous infiltration; Porous media; Subdiffusion and superdiffusion; Time-fractional Boussinesq equation; Time variable order fractional derivative; VARIABLE-ORDER; DIFFUSION EQUATION; DIFFERENTIAL-OPERATORS; VISCOELASTICITY; OSCILLATOR;
D O I
10.1007/s11075-014-9853-9
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Nonlinear time-fractional diffusion equations have been used to describe the liquid infiltration for both subdiffusion and superdiffusion in porous media. In this paper, some problems of anomalous infiltration with a variable-order time-fractional derivative in porous media are considered. The time-fractional Boussinesq equation is also considered. Two computationally efficient implicit numerical schemes for the diffusion and wave-diffusion equations are proposed. Numerical examples are provided to show that the numerical methods are computationally efficient.
引用
收藏
页码:443 / 454
页数:12
相关论文
共 20 条
[1]   NUMERICAL SCHEMES WITH HIGH SPATIAL ACCURACY FOR A VARIABLE-ORDER ANOMALOUS SUBDIFFUSION EQUATION [J].
Chen, Chang-Ming ;
Liu, F. ;
Anh, V. ;
Turner, I. .
SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2010, 32 (04) :1740-1760
[2]   The analytical solution and numerical solution of the fractional diffusion-wave equation with damping [J].
Chen, J. ;
Liu, F. ;
Anh, V. ;
Shen, S. ;
Liu, Q. ;
Liao, C. .
APPLIED MATHEMATICS AND COMPUTATION, 2012, 219 (04) :1737-1748
[3]   Mechanics with variable-order differential operators [J].
Coimbra, CFM .
ANNALEN DER PHYSIK, 2003, 12 (11-12) :692-703
[4]   Nonlinear dynamics and control of a variable order oscillator with application to the van der Pol equation [J].
Diaz, G. ;
Coimbra, C. F. M. .
NONLINEAR DYNAMICS, 2009, 56 (1-2) :145-157
[5]   An anomalous non-self-similar infiltration and fractional diffusion equation [J].
Gerasimov, D. N. ;
Kondratieva, V. A. ;
Sinkevich, O. A. .
PHYSICA D-NONLINEAR PHENOMENA, 2010, 239 (16) :1593-1597
[6]   Control of damping oscillations by fractional differential operator with time-dependent order [J].
Ingman, D ;
Suzdalnitsky, J .
COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2004, 193 (52) :5585-5595
[7]   Constitutive dynamic-order model for nonlinear contact phenomena [J].
Ingman, D ;
Suzdalnitsky, J ;
Zeifman, M .
JOURNAL OF APPLIED MECHANICS-TRANSACTIONS OF THE ASME, 2000, 67 (02) :383-390
[8]   Numerical analysis and physical simulations for the time fractional radial diffusion equation [J].
Li, Can ;
Deng, Weihua ;
Wu, Yujiang .
COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2011, 62 (03) :1024-1037
[9]   Initialization, conceptualization, and application in the generalized (fractional) calculus [J].
National Aeronautics and Space Administration, Glenn Research Center, Cleveland, OH, United States ;
不详 .
Crit. Rev. Biomed. Eng., 2007, 6 (447-553) :447-553
[10]   Variable order and distributed order fractional operators [J].
Lorenzo, CF ;
Hartley, TT .
NONLINEAR DYNAMICS, 2002, 29 (1-4) :57-98