Bunce-Deddens Algebras as Quantum Gromov-Hausdorff Distance Limits of Circle Algebras

被引:3
作者
Aguilar, Konrad [1 ]
Latremoliere, Frederic [2 ]
Rainone, Timothy [3 ]
机构
[1] Pomona Coll, Dept Math & Stat, 610 N Coll Ave, Claremont, CA 91711 USA
[2] Univ Denver, Dept Math, Denver, CO 80208 USA
[3] Occidental Coll, Dept Math, Los Angeles, CA 90041 USA
基金
欧盟地平线“2020”;
关键词
Noncommutative metric geometry; Gromov-Hausdorff convergence; Monge-Kantorovich distance; Quantum Metric Spaces; Lipnorms; Bunce-Deddens algebras; AT-algebras; SPACES;
D O I
10.1007/s00020-021-02678-w
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We show that Bunce-Deddens algebras, which are AT-algebras, are also limits of circle algebras for Rieffel's quantum Gromov-Hausdorff distance, and moreover, form a continuous family indexed by the Baire space. To this end, we endow Bunce-Deddens algebras with a quantum metric structure, a step which requires that we reconcile the constructions of the Latr ' emoli`ere's Gromov-Hausdorff propinquity and Rieffel's quantum Gromov-Hausdorff distance when working on order-unit quantum metric spaces. This work thus continues the study of the connection between inductive limits and metric limits.
引用
收藏
页数:42
相关论文
共 31 条
[1]  
Aguilar K., 2020, J AUST MATH SOC
[2]   FELL TOPOLOGIES FOR AF-ALGEBRAS AND THE QUANTUM PROPINQUITY [J].
Aguilar, Konrad .
JOURNAL OF OPERATOR THEORY, 2019, 82 (02) :469-514
[3]   Quantum ultrametrics on AF algebras and the Gromov-Hausdorff propinquity [J].
Aguilar, Konrad ;
Latremoliere, Frederic .
STUDIA MATHEMATICA, 2015, 231 (02) :149-193
[4]  
Alfsen E.M., 1971, ERGEBNISSE MATH, V57
[5]  
[Anonymous], 2004, MEM AM MATH SOC, V168, P1
[6]  
[Anonymous], 2004, MEM AM MATH SOC, V168, P67
[7]  
[Anonymous], 1999, Metric structures for Riemannian and nonRiemannian spaces
[8]  
Brown N., 2008, Graduate Studies in Mathematics, V88
[9]   FAMILY OF SIMPLE C-STAR-ALGEBRAS RELATED TO WEIGHTED SHIFT OPERATORS [J].
BUNCE, JW ;
DEDDENS, JA .
JOURNAL OF FUNCTIONAL ANALYSIS, 1975, 19 (01) :13-24
[10]   COMPACT METRIC-SPACES, FREDHOLM MODULES, AND HYPERFINITENESS [J].
CONNES, A .
ERGODIC THEORY AND DYNAMICAL SYSTEMS, 1989, 9 :207-220