A second order accurate method for a parameterized singularly perturbed problem with integral boundary condition

被引:4
作者
Kudu, Mustafa [1 ]
Amirali, Ilhame [2 ]
Amiraliyev, Gabil M. [1 ]
机构
[1] Erzincan Binali Yildirim Univ, Fac Arts & Sci, Dept Math, TR-24100 Erzincan, Turkey
[2] Duzce Univ, Fac Arts & Sci, Dept Math, TR-81620 Duzce, Turkey
关键词
Parameterized problem; Singular perturbation; Uniform convergence; Finite difference scheme; Shishkin mesh; Integral boundary condition; DIFFERENTIAL-EQUATIONS; NUMERICAL-SOLUTION; SCHEME;
D O I
10.1016/j.cam.2021.113894
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we consider a class of parameterized singularly perturbed problems with integral boundary condition. A finite difference scheme of hybrid type with an appropriate Shishkin mesh is suggested to solve the problem. We prove that the method is of almost second order convergent in the discrete maximum norm. Numerical results are presented, which illustrate the theoretical results. (C) 2021 Elsevier B.V. All rights reserved.
引用
收藏
页数:9
相关论文
共 30 条
[1]   A numerical treatment for singularly perturbed differential equations with integral boundary condition [J].
Amiraliyev, G. M. ;
Amiraliyeva, I. G. ;
Kudu, Mustafa .
APPLIED MATHEMATICS AND COMPUTATION, 2007, 185 (01) :574-582
[2]   Uniform difference method for a parameterized singular perturbation problem [J].
Amiraliyev, G. M. ;
Kudu, Mustafa ;
Duru, Hakki .
APPLIED MATHEMATICS AND COMPUTATION, 2006, 175 (01) :89-100
[3]   A note on a parameterized singular perturbation problem [J].
Amiraliyev, GM ;
Duru, H .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2005, 182 (01) :233-242
[4]   Stability in the numerical solution of the heat equation with nonlocal boundary conditions [J].
Borovykh, N .
APPLIED NUMERICAL MATHEMATICS, 2002, 42 (1-3) :17-27
[5]   Numerical solution of a singularly perturbed three-point boundary value problem [J].
Cakir, M. ;
Amiraliyev, G. M. .
INTERNATIONAL JOURNAL OF COMPUTER MATHEMATICS, 2007, 84 (10) :1465-1481
[6]  
Cannon J., 1963, Q APPL MATH, V21, P155, DOI [10.1090/qam/160437, DOI 10.1090/QAM/160437]
[7]   A second-order difference scheme for a parameterized singular perturbation problem [J].
Cen, Zhongdi .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2008, 221 (01) :174-182
[8]  
Cen ZD, 2007, LECT NOTES ARTIF INT, V4693, P175
[10]  
Farrel P.A., 2000, ROBUST COMPUTATIONAL, P256