CT-based radiomic signature predicts distant metastasis in lung adenocarcinoma

被引:612
作者
Coroller, Thibaud P. [1 ,3 ]
Grossmann, Patrick [1 ,3 ]
Hou, Ying [1 ]
Velazquez, Emmanuel Rios [1 ]
Leijenaar, Ralph T. H. [3 ]
Hermann, Gretchen [1 ]
Lambin, Philippe [3 ]
Haibe-Kains, Benjamin [4 ,5 ]
Mak, Raymond H. [1 ]
Aerts, Hugo J. W. L. [1 ,2 ,3 ]
机构
[1] Harvard Univ, Sch Med, Dana Farber Canc Inst, Dept Radiat Oncol,Brigham & Womens Hosp, Boston, MA 02115 USA
[2] Harvard Univ, Sch Med, Dana Farber Canc Inst, Dept Radiol,Brigham & Womens Hosp, Boston, MA 02115 USA
[3] Maastricht Univ, Dept Radiat Oncol MAASTRO, GROW Res Inst, NL-6200 MD Maastricht, Netherlands
[4] Univ Hlth Network, Princess Margaret Canc Ctr, Toronto, ON, Canada
[5] Univ Toronto, Dept Med Biophys, Toronto, ON, Canada
关键词
Radiomics; Lung adenocarcinoma; NSCLC; Quantitative imaging; Biomarkers; Distant metastasis; PHASE-III TRIAL; TUMOR HETEROGENEITY; TEXTURE ANALYSIS; FDG-PET; PROGNOSTIC-FACTOR; CANCER; RADIOTHERAPY; ONCOLOGY; SURVIVAL; VOLUME;
D O I
10.1016/j.radonc.2015.02.015
中图分类号
R73 [肿瘤学];
学科分类号
100214 ;
摘要
Background and purpose: Radiomics provides opportunities to quantify the tumor phenotype non-invasively by applying a large number of quantitative imaging features. This study evaluates computed-tomography (CT) radiomic features for their capability to predict distant metastasis (DM) for lung adenocarcinoma patients. Material and methods: We included two datasets: 98 patients for discovery and 84 for validation. The phenotype of the primary tumor was quantified on pre-treatment CT-scans using 635 radiomic features. Univariate and multivariate analysis was performed to evaluate radiomics performance using the concordance index (CI). Results: Thirty-five radiomic features were found to be prognostic (CI > 0.60, FDR < 5%) for DM and twelve for survival. It is noteworthy that tumor volume was only moderately prognostic for DM (CI = 0.55, p-value = 2.77 x 10(-5)) in the discovery cohort. A radiomic-signature had strong power for predicting DM in the independent validation dataset (CI = 0.61, p-value = 1.79 x 10(-17)). Adding this radiomic-signature to a clinical model resulted in a significant improvement of predicting DM in the validation dataset (p-value = 1.56 x 10(-11)). Conclusions: Although only basic metrics are routinely quantified, this study shows that radiomic features capturing detailed information of the tumor phenotype can be used as a prognostic biomarker for clinically-relevant factors such as DM. Moreover, the radiomic-signature provided additional information to clinical data. (c) 2015 Elsevier Ireland Ltd. All rights reserved.
引用
收藏
页码:345 / 350
页数:6
相关论文
共 39 条
  • [1] Identification of residual metabolic-active areas within NSCLC tumours using a pre-radiotherapy FDG-PET-CT scan: A prospective validation
    Aerts, Hugo J. W. L.
    Bussink, Johan
    Oyen, Wim J. G.
    van Elmpt, Wouter
    Folgering, Annemieke M.
    Emans, Daisy
    Velders, Marije
    Lambin, Philippe
    De Ruysscher, Dirk
    [J]. LUNG CANCER, 2012, 75 (01) : 73 - 76
  • [2] Highly efficient carrier multiplication in PbS nanosheets
    Aerts, Michiel
    Bielewicz, Thomas
    Klinke, Christian
    Grozema, Ferdinand C.
    Houtepen, Arjan J.
    Schins, Juleon M.
    Siebbeles, Laurens D. A.
    [J]. NATURE COMMUNICATIONS, 2014, 5
  • [3] Radiotherapy plus chemotherapy with or without surgical resection for stage III non-small-cell lung cancer: a phase III randomised controlled trial
    Albain, Kathy S.
    Swann, R. Suzanne
    Rusch, Valerie W.
    Turrisi, Andrew T., III
    Shepherd, Frances A.
    Smith, Colum
    Chen, Yuhchyau
    Livingston, Robert B.
    Feins, Richard H.
    Gandara, David R.
    Fry, Willard A.
    Darling, Gail
    Johnson, David H.
    Green, Mark R.
    Miller, Robert C.
    Ley, Joanne
    Sause, Willliam T.
    Cox, James D.
    [J]. LANCET, 2009, 374 (9687) : 379 - 386
  • [4] TUMOR VOLUME IS A PROGNOSTIC FACTOR IN NON-SMALL-CELL LUNG CANCER TREATED WITH CHEMORADIOTHERAPY
    Alexander, Brian M.
    Othus, Megan
    Caglar, Hale B.
    Allen, Aaron M.
    [J]. INTERNATIONAL JOURNAL OF RADIATION ONCOLOGY BIOLOGY PHYSICS, 2011, 79 (05): : 1381 - 1387
  • [5] [Anonymous], RMETA
  • [6] [Anonymous], INT J RAD ONCOL
  • [7] [Anonymous], RADIOLOGY
  • [8] [Anonymous], RADIOLOGY
  • [9] Reproducibility and Prognosis of Quantitative Features Extracted from CT Images
    Balagurunathan, Yoganand
    Gu, Yuhua
    Wang, Hua
    Kumar, Virendra
    Grove, Olya
    Hawkins, Sam
    Kim, Jongphil
    Goldgof, Dmitry B.
    Hall, Lawrence O.
    Gatenby, Robert A.
    Gillies, Robert J.
    [J]. TRANSLATIONAL ONCOLOGY, 2014, 7 (01) : 72 - 87
  • [10] The complex relationship between lung tumor volume and survival in patients with non-small cell lung cancer treated by definitive radiotherapy: A prospective, observational prognostic factor study of the Trans-Tasman Radiation Oncology Group (TROG 99.05)
    Ball, David L.
    Fisher, Richard J.
    Burmeister, Bryan H.
    Poulsen, Michael G.
    Graham, Peter H.
    Penniment, Michael G.
    Vinod, Shalini K.
    Krawitz, Hedley E.
    Joseph, David J.
    Wheeler, Greg C.
    McClure, Bev E.
    [J]. RADIOTHERAPY AND ONCOLOGY, 2013, 106 (03) : 305 - 311