Class field theory, Diophantine analysis and the asymptotic Fermat's Last Theorem

被引:12
作者
Freitas, Nuno [1 ]
Kraus, Alain [2 ]
Siksek, Samir [3 ]
机构
[1] Univ Barcelona, Dept Matemat & Informat, Gran Via Corts Catalanes 585, E-08007 Barcelona, Spain
[2] Sorbonne Univ, Inst Math Jussieu Paris Rive Gauche, UMR 7586, CNRS,Paris Diderot, 4 Pl Jussieu, F-75005 Paris, France
[3] Univ Warwick, Math Inst, Coventry CV4 7AL, W Midlands, England
基金
英国工程与自然科学研究理事会; 欧盟地平线“2020”;
关键词
Fermat; Modularity; Class field theory; Diophantine analysis; ELLIPTIC-CURVES; EQUATION;
D O I
10.1016/j.aim.2019.106964
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Recent results of Freitas, Kraus, Sengun and Siksek, give sufficient criteria for the asymptotic Fermat's Last Theorem to hold over a specific number field. Those works in turn build on many deep theorems in arithmetic geometry. In this paper we combine the aforementioned results with techniques from class field theory, the theory of p-groups and p-extensions, Diophantine approximation and linear forms in logarithms, to establish the asymptotic Fermat's Last Theorem for many infinite families of number fields, and for thousands of number fields of small degree. For example, we prove the effective asymptotic Fermat's Last Theorem for the infinite family of fields Q(zeta(r)(2))(+) where r >= 2. (C) 2019 Elsevier Inc. All rights reserved.
引用
收藏
页数:37
相关论文
共 31 条
[1]   On the Davenport-Heilbronn theorems and second order terms [J].
Bhargava, Manjul ;
Shankar, Arul ;
Tsimerman, Jacob .
INVENTIONES MATHEMATICAE, 2013, 193 (02) :439-499
[2]  
Biasse Jean-Francois., 2013, ANTS XPROCEEDINGS 10, V1, P113, DOI 10.2140/obs.2013.1.113
[3]   The Magma algebra system .1. The user language [J].
Bosma, W ;
Cannon, J ;
Playoust, C .
JOURNAL OF SYMBOLIC COMPUTATION, 1997, 24 (3-4) :235-265
[4]   The abc-conjecture for algebraic numbers [J].
Browkin, J .
ACTA MATHEMATICA SINICA-ENGLISH SERIES, 2006, 22 (01) :211-222
[5]  
Buchmann J., 1990, S MINAIRE TH ORIE NO, V91, P27
[6]   Subexponential algorithms for class group and unit computations [J].
Cohen, H ;
Diaz, FDY ;
Olivier, M .
JOURNAL OF SYMBOLIC COMPUTATION, 1997, 24 (3-4) :433-441
[7]  
Cohen H., 2000, ADV TOPICS COMPUTATI, V138
[8]   THE DENSITY OF ABELIAN CUBIC FIELDS [J].
COHN, H .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1954, 5 (03) :476-477
[9]   The asymptotic Fermat's Last Theorem for five-sixths of real quadratic fields [J].
Freitas, Nuno ;
Siksek, Samir .
COMPOSITIO MATHEMATICA, 2015, 151 (08) :1395-1415
[10]   Fermat's last theorem over some small real quadratic fields [J].
Freitas, Nuno ;
Siksek, Samir .
ALGEBRA & NUMBER THEORY, 2015, 9 (04) :875-895