Discrete dislocation simulation of the ultrasonic relaxation of non-equilibrium grain boundaries in a deformed polycrystal

被引:7
作者
Bachurin, D. V. [1 ,2 ]
Murzaev, R. T. [2 ]
Nazarov, A. A. [2 ,3 ]
机构
[1] Karlsruhe Inst Technol, Inst Appl Mat Appl Mat Phys, Hermann von Helmholtz Pl 1, D-76344 Eggenstein Leopoldshafen, Germany
[2] Russian Acad Sci, Inst Met Superplast Problems, 39 Khalturin St, Ufa 450001, Russia
[3] Nosov Magnitogorsk State Tech Univ, 38 Lenin St, Magnitogorsk 455000, Russia
关键词
Ultrasonic treatment; Disordered dislocation struc tures; Non-equilibrium grain boundaries; Dislocation rearrangement; Columnar polycrystal; HIGH-PRESSURE TORSION; IMPACT TREATMENT; NICKEL; DYNAMICS; METALS; DEFORMATION; STRENGTH; TRIPOLES; BEHAVIOR; SIZE;
D O I
10.1016/j.ultras.2021.106555
中图分类号
O42 [声学];
学科分类号
070206 ; 082403 ;
摘要
For the first time, the relaxation of disordered dislocation arrays in a model 3 x 3 columnar polycrystal under ultrasonic action is studied using the discrete dislocation approach. A l l grains contain three non-parallel slip systems located at an angle of 60 degrees to each other. The non-equilibriu m state of the grain boundaries is modeled using two finite edge dislocation walls with Burgers vector of opposite signs, which are equivalent to a wedge junction disclination quadrupole. It is shown that ultrasonic treatment causes a significant rearrangement of the lattice dislocations and their gliding towards the grain boundaries. It results in a decrease in the internal stress fields associated with the presence of non-equilibriu m grain boundaries and relaxation of dislocation structure. The model predicts an existence of optimal amplitude, at which the maximu m relaxing effect can be achieved. Dependence of the relaxation of dislocation structure on the grain size is also investigated .
引用
收藏
页数:9
相关论文
共 60 条
  • [11] A two-dimensional discrete dislocation simulation of the effect of grain size on strengthening behaviour
    Biner, SB
    Morris, JR
    [J]. MODELLING AND SIMULATION IN MATERIALS SCIENCE AND ENGINEERING, 2002, 10 (06) : 617 - 635
  • [12] Blanter MS., 2016, ENCY IRON STEEL THEI, P1852, DOI DOI 10.1081/E-EISA
  • [13] Boyer H.E., 1984, METALS HDB, VDesk
  • [14] Self-organization of dislocations in an ultrasound field
    Bushueva, G. V.
    Zinenkova, G. M.
    Tyapunina, N. A.
    Degtyarev, V. T.
    Losev, A. Yu.
    Plotnikov, F. A.
    [J]. CRYSTALLOGRAPHY REPORTS, 2008, 53 (03) : 474 - 479
  • [15] COTTRELL AH, 1952, PHILOS MAG, V43, P645
  • [16] Ultrasonic assisted-ECAP
    Djavanroodi, F.
    Ahmadian, H.
    Koohkan, K.
    Naseri, R.
    [J]. ULTRASONICS, 2013, 53 (06) : 1089 - 1096
  • [17] Fokin A.I., 1985, NUMERICAL METHODS AP, P111
  • [18] Formation of dislocation patterns: Computer simulations
    Fournet, R
    Salazar, JM
    [J]. PHYSICAL REVIEW B, 1996, 53 (10): : 6283 - 6290
  • [19] FRIEDRICH R, 1969, Z METALLKD, V60, P390
  • [20] DISLOCATION DISTRIBUTIONS IN 2 DIMENSIONS
    GULLUOGLU, AN
    SROLOVITZ, DJ
    LESAR, R
    LOMDAHL, PS
    [J]. SCRIPTA METALLURGICA, 1989, 23 (08): : 1347 - 1352