Discrete dislocation simulation of the ultrasonic relaxation of non-equilibrium grain boundaries in a deformed polycrystal

被引:7
作者
Bachurin, D. V. [1 ,2 ]
Murzaev, R. T. [2 ]
Nazarov, A. A. [2 ,3 ]
机构
[1] Karlsruhe Inst Technol, Inst Appl Mat Appl Mat Phys, Hermann von Helmholtz Pl 1, D-76344 Eggenstein Leopoldshafen, Germany
[2] Russian Acad Sci, Inst Met Superplast Problems, 39 Khalturin St, Ufa 450001, Russia
[3] Nosov Magnitogorsk State Tech Univ, 38 Lenin St, Magnitogorsk 455000, Russia
关键词
Ultrasonic treatment; Disordered dislocation struc tures; Non-equilibrium grain boundaries; Dislocation rearrangement; Columnar polycrystal; HIGH-PRESSURE TORSION; IMPACT TREATMENT; NICKEL; DYNAMICS; METALS; DEFORMATION; STRENGTH; TRIPOLES; BEHAVIOR; SIZE;
D O I
10.1016/j.ultras.2021.106555
中图分类号
O42 [声学];
学科分类号
070206 ; 082403 ;
摘要
For the first time, the relaxation of disordered dislocation arrays in a model 3 x 3 columnar polycrystal under ultrasonic action is studied using the discrete dislocation approach. A l l grains contain three non-parallel slip systems located at an angle of 60 degrees to each other. The non-equilibriu m state of the grain boundaries is modeled using two finite edge dislocation walls with Burgers vector of opposite signs, which are equivalent to a wedge junction disclination quadrupole. It is shown that ultrasonic treatment causes a significant rearrangement of the lattice dislocations and their gliding towards the grain boundaries. It results in a decrease in the internal stress fields associated with the presence of non-equilibriu m grain boundaries and relaxation of dislocation structure. The model predicts an existence of optimal amplitude, at which the maximu m relaxing effect can be achieved. Dependence of the relaxation of dislocation structure on the grain size is also investigated .
引用
收藏
页数:9
相关论文
共 60 条
[11]   A two-dimensional discrete dislocation simulation of the effect of grain size on strengthening behaviour [J].
Biner, SB ;
Morris, JR .
MODELLING AND SIMULATION IN MATERIALS SCIENCE AND ENGINEERING, 2002, 10 (06) :617-635
[12]  
Blanter M., 2016, Encyclopedia of Iron, Steel and Their Alloys, Taylor and Francis, New York, P1852, DOI 10.1081/e-eisa-120049024
[13]  
Boyer H.E., 1984, METALS HDB, VDesk
[14]   Self-organization of dislocations in an ultrasound field [J].
Bushueva, G. V. ;
Zinenkova, G. M. ;
Tyapunina, N. A. ;
Degtyarev, V. T. ;
Losev, A. Yu. ;
Plotnikov, F. A. .
CRYSTALLOGRAPHY REPORTS, 2008, 53 (03) :474-479
[15]  
COTTRELL AH, 1952, PHILOS MAG, V43, P645
[16]   Ultrasonic assisted-ECAP [J].
Djavanroodi, F. ;
Ahmadian, H. ;
Koohkan, K. ;
Naseri, R. .
ULTRASONICS, 2013, 53 (06) :1089-1096
[17]  
Fokin A.I., 1985, NUMERICAL METHODS AP, P111
[18]   Formation of dislocation patterns: Computer simulations [J].
Fournet, R ;
Salazar, JM .
PHYSICAL REVIEW B, 1996, 53 (10) :6283-6290
[19]  
FRIEDRICH R, 1969, Z METALLKD, V60, P390
[20]   DISLOCATION DISTRIBUTIONS IN 2 DIMENSIONS [J].
GULLUOGLU, AN ;
SROLOVITZ, DJ ;
LESAR, R ;
LOMDAHL, PS .
SCRIPTA METALLURGICA, 1989, 23 (08) :1347-1352