Discrete dislocation simulation of the ultrasonic relaxation of non-equilibrium grain boundaries in a deformed polycrystal

被引:7
作者
Bachurin, D. V. [1 ,2 ]
Murzaev, R. T. [2 ]
Nazarov, A. A. [2 ,3 ]
机构
[1] Karlsruhe Inst Technol, Inst Appl Mat Appl Mat Phys, Hermann von Helmholtz Pl 1, D-76344 Eggenstein Leopoldshafen, Germany
[2] Russian Acad Sci, Inst Met Superplast Problems, 39 Khalturin St, Ufa 450001, Russia
[3] Nosov Magnitogorsk State Tech Univ, 38 Lenin St, Magnitogorsk 455000, Russia
关键词
Ultrasonic treatment; Disordered dislocation struc tures; Non-equilibrium grain boundaries; Dislocation rearrangement; Columnar polycrystal; HIGH-PRESSURE TORSION; IMPACT TREATMENT; NICKEL; DYNAMICS; METALS; DEFORMATION; STRENGTH; TRIPOLES; BEHAVIOR; SIZE;
D O I
10.1016/j.ultras.2021.106555
中图分类号
O42 [声学];
学科分类号
070206 ; 082403 ;
摘要
For the first time, the relaxation of disordered dislocation arrays in a model 3 x 3 columnar polycrystal under ultrasonic action is studied using the discrete dislocation approach. A l l grains contain three non-parallel slip systems located at an angle of 60 degrees to each other. The non-equilibriu m state of the grain boundaries is modeled using two finite edge dislocation walls with Burgers vector of opposite signs, which are equivalent to a wedge junction disclination quadrupole. It is shown that ultrasonic treatment causes a significant rearrangement of the lattice dislocations and their gliding towards the grain boundaries. It results in a decrease in the internal stress fields associated with the presence of non-equilibriu m grain boundaries and relaxation of dislocation structure. The model predicts an existence of optimal amplitude, at which the maximu m relaxing effect can be achieved. Dependence of the relaxation of dislocation structure on the grain size is also investigated .
引用
收藏
页数:9
相关论文
共 60 条
[1]  
Abramov O.V., 1999, HIGH INTENSITY ULTRA
[2]   Surface hardening of metals by ultrasonically accelerated small metal balls [J].
Abramov, VO ;
Abramov, OV ;
Sommer, F ;
Gradov, OM ;
Smirnov, OM .
ULTRASONICS, 1998, 36 (10) :1013-1019
[3]   Effect of ultrasonic shot peening duration on microstructure, corrosion behavior and cell response of cp-Ti [J].
Agrawal, Rahul Kumar ;
Pandey, Vaibhav ;
Barhanpurkar-Naik, Amruta ;
Wani, Mohan R. ;
Chattopadhyay, Kausik ;
Singh, Vakil .
ULTRASONICS, 2020, 104
[4]   A two-dimensional dislocation dynamics model of the plastic deformation of polycrystalline metals [J].
Ahmed, Naveen ;
Hartmaier, Alexander .
JOURNAL OF THE MECHANICS AND PHYSICS OF SOLIDS, 2010, 58 (12) :2054-2064
[5]   DISLOCATION DYNAMICS .2. APPLICATIONS TO THE FORMATION OF PERSISTENT SLIP BANDS, PLANAR ARRAYS AND DISLOCATION CELLS [J].
AMODEO, RJ ;
GHONIEM, NM .
PHYSICAL REVIEW B, 1990, 41 (10) :6968-6976
[6]   Relaxation of dislocation structures under ultrasonic influence [J].
Bachurin, D. V. ;
Murzaev, R. T. ;
Nazarov, A. A. .
INTERNATIONAL JOURNAL OF SOLIDS AND STRUCTURES, 2019, 156 :1-13
[7]   Ultrasonic influence on evolution of disordered dislocation structures [J].
Bachurin, D. V. ;
Murzaev, R. T. ;
Nazarov, A. A. .
MODELLING AND SIMULATION IN MATERIALS SCIENCE AND ENGINEERING, 2017, 25 (08)
[8]   Dislocation-grain boundary interaction in ⟨1 1 1⟩ textured thin metal films [J].
Bachurin, D. V. ;
Weygand, D. ;
Gumbsch, P. .
ACTA MATERIALIA, 2010, 58 (16) :5232-5241
[9]   Cellular dislocation patterning during plastic deformation [J].
Bako, Botond ;
Hoffelner, Wolfgang .
PHYSICAL REVIEW B, 2007, 76 (21)
[10]   Discrete dislocation plasticity analysis of the grain size dependence of the flow strength of polycrystals [J].
Balint, D. S. ;
Deshpande, V. S. ;
Needleman, A. ;
Van der Giessen, E. .
INTERNATIONAL JOURNAL OF PLASTICITY, 2008, 24 (12) :2149-2172