Optimal transport of vector measures

被引:7
|
作者
Ciosmak, Krzysztof J. [1 ,2 ]
机构
[1] Univ Oxford, Math Inst, Andrew Wiles Bldg,Radcliffe Observ Quarter 550, Oxford OX2 6GG, England
[2] Univ Oxford, St Johns Coll, Oxford, England
基金
美国国家科学基金会; 英国工程与自然科学研究理事会;
关键词
METRIC-MEASURE-SPACES; RICCI CURVATURE; INEQUALITIES; GEOMETRY; SHARP;
D O I
10.1007/s00526-021-02095-2
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We develop and study a theory of optimal transport for vector measures. We resolve in the negative a conjecture of Klartag, that given a vector measure on Euclidean space with total mass zero, the mass of any transport set is again zero. We provide a counterexample to the conjecture. We generalise the Kantorovich-Rubinstein duality to the vector measures setting. Employing the generalisation, we answer the conjecture in the affirmative provided there exists an optimal transport with absolutely continuous marginals of its total variation.
引用
收藏
页数:22
相关论文
共 50 条
  • [1] Optimal transport of vector measures
    Krzysztof J. Ciosmak
    Calculus of Variations and Partial Differential Equations, 2021, 60
  • [2] MATRIX HO"\LDER'S INEQUALITY AND DIVERGENCE FORMULATION OF OPTIMAL TRANSPORT OF VECTOR MEASURES*
    Ciosmak, Krzysztof J.
    SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2021, 53 (06) : 6932 - 6958
  • [3] On the Optimal Transport of Semiclassical Measures
    Zanelli, Lorenzo
    APPLIED MATHEMATICS AND OPTIMIZATION, 2016, 74 (02): : 325 - 342
  • [4] On the Optimal Transport of Semiclassical Measures
    Lorenzo Zanelli
    Applied Mathematics & Optimization, 2016, 74 : 325 - 342
  • [5] Optimal transport between random measures
    Huesmann, Martin
    ANNALES DE L INSTITUT HENRI POINCARE-PROBABILITES ET STATISTIQUES, 2016, 52 (01): : 196 - 232
  • [6] Optimal Transport with Tempered Exponential Measures
    Amid, Ehsan
    Nielsen, Frank
    Nock, Richard
    Warmuth, Manfred K.
    THIRTY-EIGHTH AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE, VOL 38 NO 10, 2024, : 10838 - 10846
  • [7] Schrodinger dynamics and optimal transport of measures
    Zanelli, Lorenzo
    INFINITE DIMENSIONAL ANALYSIS QUANTUM PROBABILITY AND RELATED TOPICS, 2021, 24 (03)
  • [8] Unbalanced L1 optimal transport for vector valued measures and application to Full Waveform Inversion
    Todeschi, Gabriele
    Metivier, Ludovic
    Mirebeau, Jean-Marie
    JOURNAL OF COMPUTATIONAL PHYSICS, 2025, 523
  • [9] Optimal Transport for Measures with Noisy Tree Metric
    Le, Tam
    Truyen Nguyen
    Fukumizu, Kenji
    INTERNATIONAL CONFERENCE ON ARTIFICIAL INTELLIGENCE AND STATISTICS, VOL 238, 2024, 238
  • [10] VECTOR-VALUED OPTIMAL MASS TRANSPORT
    Chen, Yongxin
    Georgiou, Tryphon T.
    Tannenbaum, Allen
    SIAM JOURNAL ON APPLIED MATHEMATICS, 2018, 78 (03) : 1682 - 1696