Control of Inverted pendulum using Adaptive Neuro Fuzzy Inference Structure (ANFIS)

被引:0
|
作者
Tatikonda, Ravi Chandra [1 ]
Battula, Venkata Praveen [1 ]
Kumar, Vijay [1 ]
机构
[1] IIT Roorkee, Elect & Comp Dept, Roorkee, Uttar Pradesh, India
关键词
SYSTEM;
D O I
暂无
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
This paper addresses some of the potential benefits of using ANFIS controllers to control an inverted pendulum system. The stages of the development of a four input Adaptive-neuro fuzzy inference structure(ANFIS)model were presented. The main idea of this paper is to implement and optimized neuro-fuzzy logic control algorithms in order to balance the inverted pendulum and at the same time reducing the computational time of the controller. In this work, the inverted pendulum system was modeled and constructed using Simulink and the performance of the proposed ANFIS controller is compared to the more commonly used PID controller through simulations using Matlab. Simulation results show that the ANFIS Controllers are far more superior compared to PID controllers in terms of overshoot, settling time and response to parameter changes.
引用
收藏
页码:1348 / 1351
页数:4
相关论文
共 50 条
  • [21] A novel adaptive fuzzy control of the inverted pendulum system
    Geng, Feng
    Zhu, Xiaoping
    2007 IEEE INTERNATIONAL CONFERENCE ON CONTROL AND AUTOMATION, VOLS 1-7, 2007, : 2776 - +
  • [22] Real time adaptive fuzzy control of inverted pendulum
    Djurdjevic, PD
    42ND MIDWEST SYMPOSIUM ON CIRCUITS AND SYSTEMS, PROCEEDINGS, VOLS 1 AND 2, 1999, : 910 - 913
  • [23] Estimation of subsurface strata of earth using Adaptive Neuro-Fuzzy Inference System (ANFIS)
    Y. Srinivas
    A. Stanley Raj
    D. Hudson Oliver
    D. Muthuraj
    N. Chandrasekar
    Acta Geodaetica et Geophysica Hungarica, 2012, 47 : 78 - 89
  • [24] Ladder Heat Sink Design Using Adaptive Neuro- Fuzzy Inference System (ANFIS)
    Bataineh, Ahmad
    Batayneh, Wafa
    Al-Smadi, Ahmad
    Bataineh, Baian
    JORDAN JOURNAL OF MECHANICAL AND INDUSTRIAL ENGINEERING, 2019, 13 (01): : 27 - 36
  • [25] The State of Charge Estimation for Rechargeable batteries Using Adaptive Neuro Fuzzy Inference System (ANFIS)
    Fekry, Hesham M.
    Hassan, M. A. Moustafa
    Abd El Aziz, M. M.
    2012 FIRST INTERNATIONAL CONFERENCE ON INNOVATIVE ENGINEERING SYSTEMS (ICIES), 2012, : 201 - 206
  • [26] Optimization of Photosynthetic Rate Parameters using Adaptive Neuro-Fuzzy Inference System (ANFIS)
    Valenzuela, Ira C.
    Baldovino, Renann G.
    Bandala, Argel A.
    Dadios, Elmer P.
    2017 INTERNATIONAL CONFERENCE ON COMPUTER AND APPLICATIONS (ICCA), 2017, : 129 - 134
  • [27] Modeling of residential lighting load profile using adaptive neuro fuzzy inference system (ANFIS)
    Popoola, O. M.
    INTERNATIONAL JOURNAL OF GREEN ENERGY, 2016, 13 (14) : 1473 - 1482
  • [28] Prediction of unsaturated hydraulic conductivity using adaptive neuro- fuzzy inference system (ANFIS)
    Sihag P.
    Tiwari N.K.
    Ranjan S.
    ISH Journal of Hydraulic Engineering, 2019, 25 (02): : 132 - 142
  • [29] ESTIMATION OF SUBSURFACE STRATA OF EARTH USING ADAPTIVE NEURO-FUZZY INFERENCE SYSTEM (ANFIS)
    Srinivas, Y.
    Raj, A. Stanley
    Oliver, D. Hudson
    Muthuraj, D.
    Chandrasekar, N.
    ACTA GEODAETICA ET GEOPHYSICA HUNGARICA, 2012, 47 (01): : 78 - 89
  • [30] Estimation of wind speed profile using adaptive neuro-fuzzy inference system (ANFIS)
    Mohandes, M.
    Rehman, S.
    Rahman, S. M.
    APPLIED ENERGY, 2011, 88 (11) : 4024 - 4032