Quaternion-valued positive definite functions on locally compact Abelian groups and nuclear spaces

被引:5
作者
Alpay, Daniel [1 ]
Colombo, Fabrizio [2 ]
Kimsey, David P. [1 ]
Sabadini, Irene [2 ]
机构
[1] Ben Gurion Univ Negev, Dept Math, IL-84105 Beer Sheva, Israel
[2] Politecn Milan, Dipartimento Matemat, Via E Bonardi 9, I-20133 Milan, Italy
关键词
Bochner's theorem; Bochner-Minlos theorem; quaternionic analysis; nuclear spaces;
D O I
10.1016/j.amc.2016.03.034
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper we study quaternion-valued positive definite functions on locally compact Abelian groups, real countably Hilbertian nuclear spaces and on the space R-N = {( x(1), x(2), ...) : x(d) is an element of R} endowed with the Tychonoff topology. In particular, we prove a quaternionic version of the Bochner-Minlos theorem. A tool for proving this result is a classical matricial analogue of the Bochner-Minlos theorem, which we believe is new. We will see that in all these various settings the integral representation is with respect to a quaternion-valued measure which has certain symmetry properties. (C) 2016 Elsevier Inc. All rights reserved.
引用
收藏
页码:115 / 125
页数:11
相关论文
共 15 条
[1]  
[Anonymous], 1995, MATH PHYS APPL MATH, DOI DOI 10.1007/978-94-011-0509-5
[2]  
[Anonymous], 1999, Modern techniques and their applications
[3]  
[Anonymous], 2004, Elements of Mathematics (Berlin)
[4]  
[Anonymous], 1996, RESEN I MAT ESTAT U
[5]  
Badrikian A., 1966, P S PROB METH AN LOU, P1
[6]   PONTRYAGIN DUALITY FOR SUBGROUPS AND QUOTIENTS OF NUCLEAR SPACES [J].
BANASZCZYK, W .
MATHEMATISCHE ANNALEN, 1986, 273 (04) :653-664
[7]   Monotonic functions, Stieltjes integrals and harmonic analyses. [J].
Bochner, S .
MATHEMATISCHE ANNALEN, 1933, 108 :378-410
[8]  
Gelfand I.M., 1964, Applications of Harmonic Analysis, V4
[9]  
Herglotz G., 1911, LEIPZ BER, V63, P501
[10]  
Hida T., 1993, WHITE NOISE MATH ITS, V253