Spatial feature mapping for 6DoF object pose estimation

被引:10
|
作者
Mei, Jianhan [1 ]
Jiang, Xudong [1 ]
Ding, Henghui [1 ]
机构
[1] Nanyang Technol Univ, Sch Elect & Elect Engn, Singapore, Singapore
关键词
6D Pose estimation; Rotation symmetry; Spherical convolution; Graph convolutional network; RECOGNITION; SYMMETRY;
D O I
10.1016/j.patcog.2022.108835
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
This work aims to estimate 6Dof (6D) object pose in background clutter. Considering the strong occlu-sion and background noise, we propose to utilize the spatial structure for better tackling this challenging task. Observing that the 3D mesh can be naturally abstracted by a graph, we build the graph using 3D points as vertices and mesh connections as edges. We construct the corresponding mapping from 2D im-age features to 3D points for filling the graph and fusion of the 2D and 3D features. Afterward, a Graph Convolutional Network (GCN) is applied to help the feature exchange among objects' points in 3D space. To address the problem of rotation symmetry ambiguity for objects, a spherical convolution is utilized and the spherical features are combined with the convolutional features that are mapped to the graph. Predefined 3D keypoints are voted and the 6DoF pose is obtained via the fitting optimization. Two sce-narios of inference, one with the depth information and the other without it are discussed. Tested on the datasets of YCB-Video and LINEMOD, the experiments demonstrate the effectiveness of our proposed method.(c) 2022 Elsevier Ltd. All rights reserved.
引用
收藏
页数:12
相关论文
共 50 条
  • [1] Object aspect classification and 6DoF pose estimation
    Dede, Muhammet Ali
    Genc, Yakup
    IMAGE AND VISION COMPUTING, 2022, 124
  • [2] 6DoF Pose Estimation for Intricately-Shaped Object
    Jiao, Tonghui
    Xia, Yanzhao
    Gao, Xiaosong
    Chen, Yongyu
    Zhao, Qunfei
    2019 3RD INTERNATIONAL SYMPOSIUM ON AUTONOMOUS SYSTEMS (ISAS 2019), 2019, : 199 - 204
  • [3] 6DoF Pose Estimation with Object Cutout based on a Deep Autoencoder
    Liu, Xin
    Zhang, Jichao
    He, Xian
    Song, Xiuqiang
    Qin, Xueying
    ADJUNCT PROCEEDINGS OF THE 2019 IEEE INTERNATIONAL SYMPOSIUM ON MIXED AND AUGMENTED REALITY (ISMAR-ADJUNCT 2019), 2019, : 360 - 365
  • [4] Exploring Multiple Geometric Representations for 6DoF Object Pose Estimation
    Yang, Xu
    Cai, Junqi
    Li, Kunbo
    Fan, Xiumin
    IEEE ROBOTICS AND AUTOMATION LETTERS, 2023, 8 (10) : 6115 - 6122
  • [5] Symmetry and Uncertainty-Aware Object SLAM for 6DoF Object Pose Estimation
    Merrill, Nathaniel
    Guo, Yuliang
    Zuo, Xingxing
    Huang, Xinyu
    Leutenegger, Stefan
    Peng, Xi
    Ren, Liu
    Huang, Guoquan
    2022 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2022), 2022, : 14881 - 14890
  • [6] ZebraPose: Coarse to Fine Surface Encoding for 6DoF Object Pose Estimation
    Su, Yongzhi
    Saleh, Mahdi
    Fetzer, Torben
    Rambach, Jason
    Navab, Nassir
    Busam, Benjamin
    Stricker, Didier
    Tombari, Federico
    2022 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2022), 2022, : 6728 - 6738
  • [7] "Recent Methods of 6DoF Pose Estimation"
    Akizuki S.
    Kyokai Joho Imeji Zasshi/Journal of the Institute of Image Information and Television Engineers, 2019, 73 (02): : 210 - 213
  • [8] A Survey of 6DoF Object Pose Estimation Methods for Different Application Scenarios
    Guan, Jian
    Hao, Yingming
    Wu, Qingxiao
    Li, Sicong
    Fang, Yingjian
    SENSORS, 2024, 24 (04)
  • [9] A Benchmark Dataset for 6DoF Object Pose Tracking
    Wu, Po-Chen
    Lee, Yueh-Ying
    Tseng, Hung-Yu
    Ho, Hsuan-I
    Yang, Ming-Hsuan
    Chien, Shao-Yi
    ADJUNCT PROCEEDINGS OF THE 2017 IEEE INTERNATIONAL SYMPOSIUM ON MIXED AND AUGMENTED REALITY (ISMAR-ADJUNCT), 2017, : 186 - 191
  • [10] Depth-based 6DoF Object Pose Estimation using Swin Transformer
    Li, Zhujun
    Stamos, Ioannis
    2023 IEEE/RSJ INTERNATIONAL CONFERENCE ON INTELLIGENT ROBOTS AND SYSTEMS, IROS, 2023, : 1185 - 1191