Low-temperature study of magnetic ordering in gadolinium orthophosphate

被引:12
|
作者
Thiriet, C
Javorsky, P
Konings, RJM
机构
[1] European Commiss, Joint Res Ctr, Inst Transuranium Elements, D-76125 Karlsruhe, Germany
[2] Charles Univ Prague, Fac Math & Phys, Dept Elect Struct, CR-12116 Prague, Czech Republic
关键词
magnetically ordered materials; heat capacity; order-disorder effects;
D O I
10.1016/j.ssc.2005.02.005
中图分类号
O469 [凝聚态物理学];
学科分类号
070205 ;
摘要
The zero-field heat capacity shows an antiferromagnetic ordering of Gd3+ in gadolinium orthophosphate at 0.8 K. The application of the external magnetic field leads to the splitting of the Gd3+ ground-state multiplet. The anti ferromagnetic ordering becomes gradually suppressed with increasing field, and the loss of the long-range magnetic ordering with a threshold field between 0.2 and 0.5 T is indicated by heat-capacity data. Estimated entropy of the anomaly due to magnetic ordering or the Schottky-type anomaly (above 0.5 T) is close to Rln8 as expected for Gd3+ ground-state multiplet. Magnetization measurements above 2 K corroborate this magnetic behaviour. (c) 2005 Elsevier Ltd. All rights reserved.
引用
收藏
页码:409 / 412
页数:4
相关论文
共 50 条
  • [21] On the spline approximation of low-temperature calorimetry data
    V. A. Titov
    L. I. Chernyavskii
    I. A. Voronin
    A. N. Kornilov
    Russian Journal of Physical Chemistry, 2006, 80 : 1025 - 1028
  • [22] Review of modern low-temperature adiabatic calorimetry
    Tan Zhicheng
    Di Youying
    PROGRESS IN CHEMISTRY, 2006, 18 (09) : 1234 - 1251
  • [23] Low-temperature specific heat of uranium germanides
    Pikul, A.
    Troc, R.
    Czopnik, A.
    Noel, H.
    JOURNAL OF MAGNETISM AND MAGNETIC MATERIALS, 2014, 360 : 217 - 221
  • [24] On the spline approximation of low-temperature calorimetry data
    Titov, V. A.
    Chernyavskii, L. I.
    Voronin, I. A.
    Kornilov, A. N.
    RUSSIAN JOURNAL OF PHYSICAL CHEMISTRY, 2006, 80 (07): : 1025 - 1028
  • [25] Low-temperature thermal properties of iron meteorites
    Noyes, Christopher S.
    Consolmagno, Guy. J.
    Macke, Robert J.
    Britt, Daniel T.
    Opeil, Cyril P.
    METEORITICS & PLANETARY SCIENCE, 2022, 57 (09) : 1706 - 1721
  • [26] Low-temperature heat capacity of dysprosium diboride
    Novikov, V. V.
    Matovnikov, A. V.
    JOURNAL OF THERMAL ANALYSIS AND CALORIMETRY, 2007, 88 (02) : 597 - 599
  • [27] LOW-TEMPERATURE HEAT-CAPACITY OF UREA
    ANDERSSON, O
    MATSUO, T
    SUGA, H
    FERLONI, P
    INTERNATIONAL JOURNAL OF THERMOPHYSICS, 1993, 14 (01) : 149 - 158
  • [28] Low-temperature heat capacity of α and γ polymorphs of glycine
    Drebushchak, VA
    Kovalevskaya, YA
    Paukov, IE
    Boldyreva, EV
    JOURNAL OF THERMAL ANALYSIS AND CALORIMETRY, 2003, 74 (01) : 109 - 120
  • [29] Low-temperature heat capacity of α and γ polymorphs of glycine
    V. A. Drebushchak
    Yu. A. Kovalevskaya
    I. E. Paukov
    E. V. Boldyreva
    Journal of Thermal Analysis and Calorimetry, 2003, 74 : 109 - 120
  • [30] Low-Temperature Heat Capacity of Lanthanum Hafnate
    Guskov, V. N.
    Gagarin, P. G.
    Guskov, A. V.
    Tyurin, V. V.
    Gavrichev, K. S.
    RUSSIAN JOURNAL OF INORGANIC CHEMISTRY, 2019, 64 (11) : 1436 - 1441