Coupled Fixed Point Results in Banach Spaces with Applications

被引:6
作者
Zada, Mian Bahadur [1 ]
Sarwar, Muhammad [1 ]
Abdeljawad, Thabet [2 ,3 ,4 ]
Mukheimer, Aiman [2 ]
机构
[1] Univ Malakand, Dept Math, Chakdara 18800, Pakistan
[2] Prince Sultan Univ, Dept Math & Gen Sci, POB 66833, Riyadh 11586, Saudi Arabia
[3] China Med Univ, Dept Med Res, Taichung 40402, Taiwan
[4] Asia Univ, Dept Comp Sci & Informat Engn, Taichung 41354, Taiwan
关键词
coupled fixed point theorems; measure of noncompactness; system of variable order hybrid differential equations; DIFFERENTIAL-EQUATIONS; FRACTIONAL ORDER; THEOREMS; EXISTENCE; OPERATORS;
D O I
10.3390/math9182283
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The aim of this work is to discuss the existence of solutions to the system of fractional variable order hybrid differential equations. For this reason, we establish coupled fixed point results in Banach spaces.
引用
收藏
页数:12
相关论文
共 26 条
[1]  
Almeida R, 2019, SPRINGERBRIEFS APPL
[2]   On a generalization of the Schauder and Krasnosel'skii fixed points theorems on Dunford-Pettis spaces and applications [J].
Amar, AB ;
Jeribi, A ;
Mnif, M .
MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2005, 28 (14) :1737-1756
[3]   EXISTENCE AND UNIQUENESS OF SOLUTIONS FOR A NONLINEAR FRACTIONAL INITIAL VALUE PROBLEM INVOLVING CAPUTO DERIVATIVES [J].
Appell, Juergen ;
Lopez, Belen ;
Sadarangani, Kishin .
JOURNAL OF NONLINEAR AND VARIATIONAL ANALYSIS, 2018, 2 (01) :25-33
[4]  
Atanackovic T.M., 2009, ANGEW MATH MECH, V87, P546, DOI [10.1002/zamm.200710335, DOI 10.1002/ZAMM.200710335]
[5]  
Bana J., 1980, Comment. Math. Univ. Carol., V60
[6]   Some fixed point theorems and application to biological model [J].
Ben Amar, Afif ;
Jeribi, Aref ;
Mnif, Maher .
NUMERICAL FUNCTIONAL ANALYSIS AND OPTIMIZATION, 2008, 29 (1-2) :1-23
[7]  
Ben Amar A, 2016, FIXED POINT THEOR-RO, V17, P3
[8]   Fixed point theorems in partially ordered metric spaces and applications [J].
Bhaskar, T. Gnana ;
Lakshmikantham, V. .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2006, 65 (07) :1379-1393
[9]   A fixed-point theorem of Krasnoselskii [J].
Burton, TA .
APPLIED MATHEMATICS LETTERS, 1998, 11 (01) :85-88
[10]  
Carpinteri A., 2014, FRACTALS FRACTIONAL, V378