Dynamic parameter inverse analysis of concrete dams based on Jaya algorithm with Gaussian processes surrogate model

被引:52
作者
Kang, Fei [1 ]
Wu, Yingrui [1 ]
Li, Junjie [1 ,2 ]
Li, Hongjun [3 ]
机构
[1] Dalian Univ Technol, Fac Infrastruct Engn, Sch Hydraul Engn, Dalian 116024, Peoples R China
[2] Hohai Univ, Coll Water Conservancy & Hydropower Engn, Nanjing 210098, Peoples R China
[3] China Inst Water Resources & Hydropower Res, State Key Lab Simulat & Regulat Water Cycle River, Beijing 100048, Peoples R China
基金
中国国家自然科学基金;
关键词
Dams; Inverse; back analysis; Vibration data; Gaussian process regression; Jaya algorithm; SUPPORT VECTOR MACHINES; ARCH DAM; DESIGN OPTIMIZATION; NATURAL FREQUENCIES; STRUCTURAL DAMAGE; TRUSS STRUCTURES; IDENTIFICATION; PREDICTION;
D O I
10.1016/j.aei.2021.101348
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
A dynamic parameter inverse analysis process for concrete dams based on Gaussian process regression and Jaya algorithm is presented. Gaussian process regression is used to establish a response surface representing the relationship between dynamic elastic modulus and modal parameters (natural frequency and mode shape). The Jaya algorithm is applied for dynamic parameter identification by minimizing the objective function. To verify the performance of the proposed method, we consider a concrete single buttress dam and a hyperbolic concrete arch dam as numerical examples. Numerical results show that Gaussian process regression can significantly improve the parameter identification efficiency without compromising on accuracy. Furthermore, the Jaya al-gorithm is compared with particle swarm optimization algorithm and genetic algorithm; the results show that the Jaya algorithm is promising in parameter recognition.
引用
收藏
页数:19
相关论文
共 55 条
  • [1] Allemang RJ, 2003, SOUND VIB, V37, P14
  • [2] Ardito R, 2008, ENG STRUCT, V30, P3176, DOI 10.1016/j.engstruct.2008.04.008
  • [3] A multi-criteria decision framework to support measurement-system design for bridge load testing
    Bertola, Numa J.
    Cinelli, Marco
    Casset, Simon
    Corrente, Salvatore
    Smith, Ian F. C.
    [J]. ADVANCED ENGINEERING INFORMATICS, 2019, 39 : 186 - 202
  • [4] An inverse analysis approach for the identification of the hygro-thermo-chemical model parameters of concrete
    Bocciarelli, Massimiliano
    Ranzi, Gianluca
    [J]. INTERNATIONAL JOURNAL OF MECHANICAL SCIENCES, 2018, 138 : 368 - 382
  • [5] Buddala Raviteja, 2018, Journal of Industrial Engineering International, V14, P555, DOI 10.1007/s40092-017-0244-4
  • [6] Calibration of finite element models of concrete arch-gravity dams using dynamical measures: the case of Ridracoli
    Buffi, Giulia
    Manciola, Piergiorgio
    De Lorenzis, Laura
    Cavalagli, Nicola
    Comodini, Fabrizio
    Gambi, Andrea
    Gusella, Vittorio
    Mezzi, Marco
    Niemeier, Wolfgang
    Tamagnini, Claudio
    [J]. X INTERNATIONAL CONFERENCE ON STRUCTURAL DYNAMICS (EURODYN 2017), 2017, 199 : 110 - 115
  • [7] An Effective Inverse Procedure for Identifying DEMParameters of Rock-Like Materials
    Chen, Rui
    Li, Jisheng
    Qian, Yangqing
    Peng, Ruitao
    Jiang, Shengqiang
    Hu, Congfang
    Zhao, Ziheng
    [J]. MATHEMATICAL PROBLEMS IN ENGINEERING, 2019, 2019
  • [8] The Health Monitoring Method of Concrete Dams Based on Ambient Vibration Testing and Kernel Principle Analysis
    Cheng, Lin
    Yang, Jie
    Zheng, Dongjian
    Li, Bo
    Ren, Jie
    [J]. SHOCK AND VIBRATION, 2015, 2015
  • [9] Genetic algorithm in structural damage detection
    Chou, JH
    Ghaboussi, J
    [J]. COMPUTERS & STRUCTURES, 2001, 79 (14) : 1335 - 1353
  • [10] PARAMETER AND UNCERTAINTY ESTIMATION FOR DYNAMICAL SYSTEMS USING SURROGATE STOCHASTIC PROCESSES
    Chung, Matthias
    Binois, Mickael
    Gramacy, Robert B.
    Bardsley, Johnathan M.
    Moquin, David J.
    Smith, Amanda P.
    Smith, Amber M.
    [J]. SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2019, 41 (04) : A2212 - A2238