Novel Lignin-Cellulose-Based Carbon Nanofibers as High-Performance Supercapacitors

被引:131
|
作者
Cao, Qiping [1 ]
Zhu, Mengni [1 ]
Chen, Jiaai [1 ]
Song, Yueyan [1 ]
Li, Yao [1 ]
Zhou, Jinghui [1 ]
机构
[1] Dalian Polytech Univ, Liaoning Prov Key Lab Pulp & Papermaking Engn, Dalian 116034, Liaoning, Peoples R China
基金
中国国家自然科学基金;
关键词
bio-renewable; lignin; carbon fibers; thermal stability; supercapacitor; BINDER-FREE ELECTRODES; POROUS CARBON; MOLECULAR-WEIGHT; EFFICIENT ROUTE; FIBERS; CONVERSION; PHOSPHORUS; PRECURSOR; DEPOLYMERIZATION; FRACTIONATION;
D O I
10.1021/acsami.9b14727
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
In this work, a simple phosphating process was proposed to modify cellulose-acetate (CA) and lignin for a novel energy storage precursor material. The prepared precursor fibers exhibited good thermal stability of lignin and flexibility of CA. Subsequently, the precursor fibers undergo a short preoxidation and carbonization treatment process to obtain the biomass-based carbon fibers (CFs) with complete fibrous morphology, uniform fiber diameter, high surface areas, good flexibility, and excellent power storage capacity. The specific capacitance of 346.6 F/g was obtained by using CFs-5 (prepared with 40% H3PO4 content) as a supercapacitor. Simultaneously, the biomass-based CF supercapacitor device delivers a high-energy density of 31.5 Wh/kg at the power density of 400 W/kg. These results indicate that the introduction of H3PO4 can effectively reduce the energy consumption of the preoxidation treatment process for the preparation of the biomass-based CFs, while increasing the energy storage properties significantly. This novel strategy showed a successful route for the preparation of high-quality and low-consumption biomass-based CFs.
引用
收藏
页码:1210 / 1221
页数:12
相关论文
共 50 条
  • [21] Novel and high-performance asymmetric micro-supercapacitors based on graphene quantum dots and polyaniline nanofibers
    Liu, Wenwen
    Yan, Xingbin
    Chen, Jiangtao
    Feng, Yaqiang
    Xue, Qunji
    NANOSCALE, 2013, 5 (13) : 6053 - 6062
  • [22] Cellulose-derived hierarchical porous carbon for high-performance flexible supercapacitors
    Wang, Chao
    Wang, Xianfen
    Lu, Hao
    Li, Hongliang
    Zhao, X. S.
    CARBON, 2018, 140 : 139 - 147
  • [23] Lignin/polypyrrole interpenetrating networks decorated Lignin-containing cellulose nanofibril composite membrane for High-performance supercapacitors
    Dong, Jiran
    Li, Pengfei
    Zeng, Jinsong
    Wang, Bin
    Gao, Wenhua
    Xu, Jun
    Chen, Kefu
    CHEMICAL ENGINEERING JOURNAL, 2023, 470
  • [24] Nitrogen/phosphorus co-doped nonporous carbon nanofibers for high-performance supercapacitors
    Yan, Xiaodong
    Liu, Yuan
    Fan, Xiaorong
    Jia, Xiaolong
    Yu, Yunhua
    Yang, Xiaoping
    JOURNAL OF POWER SOURCES, 2014, 248 : 745 - 751
  • [25] Anchoring polyaniline nanofibers on liquefied wood carbon aerogel for high-performance hybrid supercapacitors
    Song, Wanlong
    Ma, Xiaojun
    Qiu, Liangmu
    Guo, Ranran
    Lu, Xingyu
    Sun, Bin
    INDUSTRIAL CROPS AND PRODUCTS, 2024, 215
  • [26] N-O Codoped Carbon Nanofibers Decorated with Graphene for High-Performance Supercapacitors
    Hou, Xin
    Ren, Penggang
    Dai, Zhong
    Guo, Zhengzheng
    Zhang, Zengping
    Sun, Aiyue
    He, Wenwei
    Ren, Fang
    Jin, Yanling
    ENERGY TECHNOLOGY, 2021, 9 (12)
  • [27] Facile synthesis of hierarchical CuO nanorod arrays on carbon nanofibers for high-performance supercapacitors
    Moosavifard, Seyyed Ebrahim
    Shamsi, Javad
    Fani, Saeed
    Kadkhodazade, Saeed
    CERAMICS INTERNATIONAL, 2014, 40 (10) : 15973 - 15979
  • [28] Fabricating sustainable lignin-derived porous carbon as electrode for high-performance supercapacitors
    Wei Liu
    Zhikun Li
    Ranran Sang
    Jinsong Li
    Xueping Song
    Qingxi Hou
    Frontiers of Chemical Science and Engineering, 2023, 17 : 1065 - 1074
  • [29] Fabricating sustainable lignin-derived porous carbon as electrode for high-performance supercapacitors
    Liu, Wei
    Li, Zhikun
    Sang, Ranran
    Li, Jinsong
    Song, Xueping
    Hou, Qingxi
    FRONTIERS OF CHEMICAL SCIENCE AND ENGINEERING, 2023, 17 (08) : 1065 - 1074
  • [30] Carbon nanomaterials for high-performance supercapacitors
    Chen, Tao
    Dai, Liming
    MATERIALS TODAY, 2013, 16 (7-8) : 272 - 280