CONCENTRATION PHENOMENA FOR CRITICAL FRACTIONAL SCHRODINGER SYSTEMS

被引:23
作者
Ambrosio, Vincenzo [1 ,2 ]
机构
[1] Univ Urbino Carlo Bo, Dipartimento Sci Pure & Applicate DiSPeA, Piazza Repubbl 13, I-61029 Urbino, Pesaro, Italy
[2] Univ Urbino Carlo Bo, Dipartimento Sci Pure & Applicate DiSPeA, Piazza Repubbl 13, I-61029 Urbino, Italy
关键词
Fractional Schrodinger systems; variational methods; critical exponent; MULTIPLE POSITIVE SOLUTIONS; LOCAL MOUNTAIN PASS; ELLIPTIC-SYSTEMS; EQUATIONS; SYMMETRY; REGULARITY;
D O I
10.3934/cpaa.2018099
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper we study the existence, multiplicity and concentration behavior of solutions for the following critical fractional Schrodinger system {epsilon(2s)(-Delta)(s)u + V(x)u = Qu(u, v) + 1/2*(s) K-u(u, v) in R-N epsilon(2s)(-Delta)(s)u + W(x)v = Q(v)(u, v) + 1/2*(s) K-v(u, v) in R-N u, v > 0 in R-N, where epsilon > 0 is a parameter, s is an element of (0, 1), N > 2s, (-Delta)(s) is the fractional Laplacian operator, V : R-N -> R and W : R-N -> R are positive Holder continuous potentials, Q and K are homogeneous C-2-functions having subcritical and critical growth respectively. We relate the number of solutions with the topology of the set where the potentials V and W attain their minimum values. The proofs rely on the Ljusternik-Schnirelmann theory and variational methods.
引用
收藏
页码:2085 / 2123
页数:39
相关论文
共 52 条