CONCENTRATION PHENOMENA FOR CRITICAL FRACTIONAL SCHRODINGER SYSTEMS

被引:24
作者
Ambrosio, Vincenzo [1 ,2 ]
机构
[1] Univ Urbino Carlo Bo, Dipartimento Sci Pure & Applicate DiSPeA, Piazza Repubbl 13, I-61029 Urbino, Pesaro, Italy
[2] Univ Urbino Carlo Bo, Dipartimento Sci Pure & Applicate DiSPeA, Piazza Repubbl 13, I-61029 Urbino, Italy
关键词
Fractional Schrodinger systems; variational methods; critical exponent; MULTIPLE POSITIVE SOLUTIONS; LOCAL MOUNTAIN PASS; ELLIPTIC-SYSTEMS; EQUATIONS; SYMMETRY; REGULARITY;
D O I
10.3934/cpaa.2018099
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper we study the existence, multiplicity and concentration behavior of solutions for the following critical fractional Schrodinger system {epsilon(2s)(-Delta)(s)u + V(x)u = Qu(u, v) + 1/2*(s) K-u(u, v) in R-N epsilon(2s)(-Delta)(s)u + W(x)v = Q(v)(u, v) + 1/2*(s) K-v(u, v) in R-N u, v > 0 in R-N, where epsilon > 0 is a parameter, s is an element of (0, 1), N > 2s, (-Delta)(s) is the fractional Laplacian operator, V : R-N -> R and W : R-N -> R are positive Holder continuous potentials, Q and K are homogeneous C-2-functions having subcritical and critical growth respectively. We relate the number of solutions with the topology of the set where the potentials V and W attain their minimum values. The proofs rely on the Ljusternik-Schnirelmann theory and variational methods.
引用
收藏
页码:2085 / 2123
页数:39
相关论文
共 52 条
[1]   Local mountain pass for a class of elliptic system [J].
Alves, Claudianor O. .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2007, 335 (01) :135-150
[2]  
Alves CO, 2010, DIFFER INTEGRAL EQU, V23, P703
[3]   MULTIPLICITY OF SOLUTIONS FOR ELLIPTIC SYSTEMS VIA LOCAL MOUNTAIN PASS METHOD [J].
Alves, Claudianor O. ;
Figueiredo, Giovany M. ;
Furtado, Marcelo F. .
COMMUNICATIONS ON PURE AND APPLIED ANALYSIS, 2009, 8 (06) :1745-1758
[4]   Existence and concentration of positive solutions for a class of gradient systems [J].
Alves, CO ;
Soares, SHM .
NODEA-NONLINEAR DIFFERENTIAL EQUATIONS AND APPLICATIONS, 2006, 12 (04) :437-457
[5]   On systems of elliptic equations involving subcritical or critical Sobolev exponents [J].
Alves, CO ;
de Morais, DC ;
Souto, MAS .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2000, 42 (05) :771-787
[6]  
Ambrosio V, ARXIV170304370, pMultiplicity
[7]  
Ambrosio V., REV MAT IBEROAMERICA
[8]   Concentration phenomena for a fractional Schrodinger-Kirchhoff type equation [J].
Ambrosio, Vincenzo ;
Isernia, Teresa .
MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2018, 41 (02) :615-645
[9]   Multiplicity of positive solutions for a class of fractional Schrodinger equations via penalization method [J].
Ambrosio, Vincenzo .
ANNALI DI MATEMATICA PURA ED APPLICATA, 2017, 196 (06) :2043-2062