Geometric numerical integration of nonholonomic systems and optimal control problems

被引:13
作者
de León, M [1 ]
de Diego, DM [1 ]
Santamaría-Merino, A [1 ]
机构
[1] CSIC, Inst Matemat & Fis Fundamental, E-28006 Madrid, Spain
关键词
geometric integrators; nonholonomic systems; optimal control;
D O I
10.3166/ejc.10.515-521
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
A geometric derivation of numerical integrators for nonholonomic systems and optimal control problems is obtained. It is based on the classical technique of generating functions adapted to the special features of nonholonomic systems and optimal control problems.
引用
收藏
页码:515 / 521
页数:7
相关论文
共 9 条
[1]  
ARNOLD VI, 1978, GRADUATE TEXT MATH, V60
[2]   On almost-Poisson structures in nonholonomic mechanics [J].
Cantrijn, F ;
de León, M ;
de Diego, DM .
NONLINEARITY, 1999, 12 (03) :721-737
[3]   Non-holonomic integrators [J].
Cortés, J ;
Martínez, S .
NONLINEARITY, 2001, 14 (05) :1365-1392
[4]   Geometric integrators and nonholonomic mechanics [J].
de León, M ;
de Diego, DM ;
Santamaría-Merino, A .
JOURNAL OF MATHEMATICAL PHYSICS, 2004, 45 (03) :1042-1064
[5]   On the geometry of non-holonomic Lagrangian systems [J].
deLeon, M ;
deDiego, DM .
JOURNAL OF MATHEMATICAL PHYSICS, 1996, 37 (07) :3389-3414
[6]  
Hairer E., 2002, Geometric numerical integration, DOI 10.1007/978-3-662-05018-7
[7]  
Lewis F.L., 1986, OPTIMAL CONTROL
[8]  
Marsden J. E., 2001, DISCRETE MECH VARIAT, P357
[9]  
NEIMARK J, TRANSLATIONS MATH MO, V33