Temperature and Salt Responsive Amphoteric Nanogels Based on N-Isopropylacrylamide, 2-Acrylamido-2-methyl-1-propanesulfonic Acid Sodium Salt and (3-Acrylamidopropyl) Trimethylammonium Chloride

被引:4
作者
Ayazbayeva, Aigerim Ye [1 ,2 ]
Shakhvorostov, Alexey, V [1 ]
Gussenov, Iskander Sh [1 ,2 ]
Seilkhanov, Tulegen M. [3 ]
Aseyev, Vladimir O. [4 ]
Kudaibergenov, Sarkyt E. [1 ]
机构
[1] Inst Polymer Mat & Technol, Lab Funct Polymers, Alma Ata 050019, Kazakhstan
[2] Satbayev Univ, Dept Chem & Biochem Engn, Alma Ata 050013, Kazakhstan
[3] Sh Ualikhanov Univ, Lab NMR Spect, Kokshetau 020000, Kazakhstan
[4] Univ Helsinki, Dept Chem, Helsinki 00014, Finland
基金
欧盟地平线“2020”;
关键词
polyampholyte nanogels; thermal response; salt response; phase transition temperature; hydrophobic; hydrophilic balance; PHASE-TRANSITION; BEHAVIOR; MICROGELS; LCST;
D O I
10.3390/nano12142343
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Polyampholyte nanogels based on N-isopropylacrylamide (NIPAM), (3-acrylamidopropyl) trimethylammonium chloride (APTAC) and 2-acrylamido-2-methyl-1-propanesulfonic acid sodium salt (AMPS) were synthesized via conventional redox-initiated free radical copolymerization. The resultant nanogels of various compositions, specifically [NIPAM]:[APTAC]:[AMPS] = 90:5:5; 90:7.5:2.5; 90:2.5:7.5 mol.%, herein abbreviated as NIPAM(90)-APTAC(5)-AMPS(5), NIPAM(90)-APTAC(7.5)-AMPS(2.5) and NIPAM(90)-APTAC(2.5)-AMPS(7.5), were characterized by a combination of H-1 NMR and FTIR spectroscopy, TGA, UV-Vis, DLS and zeta potential measurements. The temperature and salt-responsive properties of amphoteric nanogels were studied in aqueous and saline solutions in a temperature range from 25 to 60 degrees C and at ionic strengths (mu) of 10(-3) to 1M NaCl. Volume phase transition temperatures (VPTT) of the charge-balanced nanogel were found to reach a maximum upon the addition of salt, whereas the same parameter for the charge-imbalanced nanogels exhibited a sharp decrease at higher saline concentrations. A wide bimodal distribution of average hydrodynamic sizes of nanogel particles had a tendency to transform to a narrow monomodal peak at elevated temperatures and higher ionic strengths. According to the DLS results, increasing ionic strength results in the clumping of nanogel particles.
引用
收藏
页数:17
相关论文
共 31 条
  • [1] Rapidly Responding pH- and Temperature-Responsive Poly (N-Isopropylacrylamide)-Based Microgels and Assemblies
    Ahiabu, Andrews
    Serpe, Michael J.
    [J]. ACS OMEGA, 2017, 2 (05): : 1769 - 1777
  • [2] Non-ionic Thermoresponsive Polymers in Water
    Aseyev, Vladimir
    Tenhu, Heikki
    Winnik, Francoise M.
    [J]. SELF ORGANIZED NANOSTRUCTURES OF AMPHIPHILIC BLOCK COPOLYMERS II, 2011, 242 : 29 - 89
  • [3] Ayazbayeva A.Y., 2021, B UNIV KARAGANDA-CHE, V104, P9, DOI DOI 10.31489/2021CH4
  • [4] Synthesis in microemulsion and characterization of stimuli-responsive polyelectrolytes and polyampholytes based on N-isopropylacrylamide
    Braun, O
    Selb, J
    Candau, F
    [J]. POLYMER, 2001, 42 (21) : 8499 - 8510
  • [5] Adsorption and release of surfactant into and from multifunctional zwitterionic poly(NIPAm-co-DMAPMA-co-AAc) microgel particles
    Chen, Haobo
    Kelley, Morgan
    Guo, Chengchen
    Yarger, Jeffery L.
    Dai, Lenore L.
    [J]. JOURNAL OF COLLOID AND INTERFACE SCIENCE, 2015, 449 : 332 - 340
  • [6] LCST and UCST behavior in polymer solutions and blends
    Clark, E. A.
    Lipson, J. E. G.
    [J]. POLYMER, 2012, 53 (02) : 536 - 545
  • [7] Modeling the effect of ionic strength on swelling of pH-sensitive macro- and nanogels
    Drozdov, A. D.
    Sanporean, C. -G.
    Christiansen, J. deClaville
    [J]. MATERIALS TODAY COMMUNICATIONS, 2016, 6 : 92 - 101
  • [8] A general LbL strategy for the growth of pNIPAM microgels on Au nanoparticles with arbitrary shapes
    Fernandez-Lopez, Cristina
    Perez-Balado, Carlos
    Perez-Juste, Jorge
    Pastoriza-Santos, Isabel
    de Lera, Angel R.
    Liz-Marzan, Luis M.
    [J]. SOFT MATTER, 2012, 8 (15) : 4165 - 4170
  • [9] Tunable LCST behavior of poly(N-isopropylacrylamide/ionic liquid) copolymers
    Jain, Kamiya
    Vedarajan, Raman
    Watanabe, Masaki
    Ishikiriyama, Mamoru
    Matsumi, Noriyoshi
    [J]. POLYMER CHEMISTRY, 2015, 6 (38) : 6819 - 6825
  • [10] KHOKHLOV AR, 1993, ADV POLYM SCI, V109, P123