A hierarchical Krylov-Bayes iterative inverse solver for MEG with physiological preconditioning

被引:33
作者
Calvetti, D. [1 ]
Pascarella, A. [2 ]
Pitolli, F. [3 ]
Somersalo, E. [1 ]
Vantaggi, B. [3 ]
机构
[1] Case Western Reserve Univ, Dept Math Appl Math & Stat, 10900 Euclid Ave, Cleveland, OH 44106 USA
[2] CNR, Ist Applicaz Calcolo Mario Picone, Rome, Italy
[3] Univ Roma La Sapienza, Dept Basic & Appl Sci Engn, Via Scarpa 16, I-00161 Rome, Italy
基金
美国国家科学基金会;
关键词
brain activity; magnetoencephalography (MEG); Bayesian hierarchical model; sparsity; prior information; EEG; LOCALIZATION; MODEL;
D O I
10.1088/0266-5611/31/12/125005
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The inverse problem of MEG aims at estimating electromagnetic cerebral activity from measurements of the magnetic fields outside the head. After formulating the problem within the Bayesian framework, a hierarchical conditionally Gaussian prior model is introduced, including a physiologically inspired prior model that takes into account the preferred directions of the source currents. The hyper-parameter vector consists of prior variances of the dipole moments, assumed to follow a non-conjugate gamma distribution with variable scaling and shape parameters. A point estimate of both dipole moments and their variances can be computed using an iterative alternating sequential updating algorithm, which is shown to be globally convergent. The numerical solution is based on computing an approximation of the dipole moments using a Krylov subspace iterative linear solver equipped with statistically inspired preconditioning and a suitable termination rule. The shape parameters of the model are shown to control the focality, and furthermore, using an empirical Bayes argument, it is shown that the scaling parameters can be naturally adjusted to provide a statistically well justified depth sensitivity scaling. The validity of this interpretation is verified through computed numerical examples. Also, a computed example showing the applicability of the algorithm to analyze realistic time series data is presented.
引用
收藏
页数:23
相关论文
共 40 条
[31]   LOW-RESOLUTION ELECTROMAGNETIC TOMOGRAPHY - A NEW METHOD FOR LOCALIZING ELECTRICAL-ACTIVITY IN THE BRAIN [J].
PASCUALMARQUI, RD ;
MICHEL, CM ;
LEHMANN, D .
INTERNATIONAL JOURNAL OF PSYCHOPHYSIOLOGY, 1994, 18 (01) :49-65
[32]  
Saad Y, 2003, ITERATIVE METHODS SP, V82, DOI DOI 10.1137/1.9780898718003
[34]   Hierarchical Bayesian estimation for MEG inverse [J].
Sato, M ;
Yoshioka, T ;
Kajihara, S ;
Toyama, K ;
Goda, N ;
Doya, K ;
Kawato, M .
NEUROIMAGE, 2004, 23 (03) :806-826
[35]   Bayesian multi-dipole modelling of a single topography in MEG by adaptive sequential Monte Carlo samplers [J].
Sorrentino, Alberto ;
Luria, Gianvittorio ;
Aramini, Riccardo .
INVERSE PROBLEMS, 2014, 30 (04)
[36]   Brainstorm: A User-Friendly Application for MEG/EEG Analysis [J].
Tadel, Francois ;
Baillet, Sylvain ;
Mosher, John C. ;
Pantazis, Dimitrios ;
Leahy, Richard M. .
COMPUTATIONAL INTELLIGENCE AND NEUROSCIENCE, 2011, 2011
[37]   Visualization of magnetoencephalographic data using minimum current estimates [J].
Uutela, K ;
Hämäläinen, M ;
Somersalo, E .
NEUROIMAGE, 1999, 10 (02) :173-180
[38]   Opportunities and methodological challenges in EEG and MEG resting state functional brain network research [J].
van Diessen, E. ;
Numan, T. ;
van Dellen, E. ;
van der Kooi, A. W. ;
Boersma, M. ;
Hofman, D. ;
van Lutterveld, R. ;
van Dijk, B. W. ;
van Straaten, E. C. W. ;
Hillebrand, A. ;
Stam, C. J. .
CLINICAL NEUROPHYSIOLOGY, 2015, 126 (08) :1468-1481
[39]   Beamforming: A versatile approach to spatial filtering. [J].
Van Veen, Barry D. ;
Buckley, Kevin M. .
IEEE ASSP magazine, 1988, 5 (02) :4-24
[40]   Independent component approach to the analysis of EEG and MEG recordings [J].
Vigário, R ;
Särelä, J ;
Jousmäki, V ;
Hämäläinen, M ;
Oja, E .
IEEE TRANSACTIONS ON BIOMEDICAL ENGINEERING, 2000, 47 (05) :589-593