A hierarchical Krylov-Bayes iterative inverse solver for MEG with physiological preconditioning

被引:33
作者
Calvetti, D. [1 ]
Pascarella, A. [2 ]
Pitolli, F. [3 ]
Somersalo, E. [1 ]
Vantaggi, B. [3 ]
机构
[1] Case Western Reserve Univ, Dept Math Appl Math & Stat, 10900 Euclid Ave, Cleveland, OH 44106 USA
[2] CNR, Ist Applicaz Calcolo Mario Picone, Rome, Italy
[3] Univ Roma La Sapienza, Dept Basic & Appl Sci Engn, Via Scarpa 16, I-00161 Rome, Italy
基金
美国国家科学基金会;
关键词
brain activity; magnetoencephalography (MEG); Bayesian hierarchical model; sparsity; prior information; EEG; LOCALIZATION; MODEL;
D O I
10.1088/0266-5611/31/12/125005
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The inverse problem of MEG aims at estimating electromagnetic cerebral activity from measurements of the magnetic fields outside the head. After formulating the problem within the Bayesian framework, a hierarchical conditionally Gaussian prior model is introduced, including a physiologically inspired prior model that takes into account the preferred directions of the source currents. The hyper-parameter vector consists of prior variances of the dipole moments, assumed to follow a non-conjugate gamma distribution with variable scaling and shape parameters. A point estimate of both dipole moments and their variances can be computed using an iterative alternating sequential updating algorithm, which is shown to be globally convergent. The numerical solution is based on computing an approximation of the dipole moments using a Krylov subspace iterative linear solver equipped with statistically inspired preconditioning and a suitable termination rule. The shape parameters of the model are shown to control the focality, and furthermore, using an empirical Bayes argument, it is shown that the scaling parameters can be naturally adjusted to provide a statistically well justified depth sensitivity scaling. The validity of this interpretation is verified through computed numerical examples. Also, a computed example showing the applicability of the algorithm to analyze realistic time series data is presented.
引用
收藏
页数:23
相关论文
共 40 条
  • [1] MEG-SIM: A Web Portal for Testing MEG Analysis Methods using Realistic Simulated and Empirical Data
    Aine, C. J.
    Sanfratello, L.
    Ranken, D.
    Best, E.
    MacArthur, J. A.
    Wallace, T.
    Gilliam, K.
    Donahue, C. H.
    Montano, R.
    Bryant, J. E.
    Scott, A.
    Stephen, J. M.
    [J]. NEUROINFORMATICS, 2012, 10 (02) : 141 - 158
  • [2] [Anonymous], BAYESIAN THEORY
  • [3] Bayesian analysis of the neuromagnetic inverse problem with lp-norm priors
    Auranen, T
    Nummenmaa, A
    Hämäläinen, MS
    Jääskeläinen, IP
    Lampinen, J
    Vehtari, A
    Sams, M
    [J]. NEUROIMAGE, 2005, 26 (03) : 870 - 884
  • [4] A Bayesian approach to introducing anatomo-functional priors in the EEG/MEG inverse problem
    Baillet, S
    Garnero, L
    [J]. IEEE TRANSACTIONS ON BIOMEDICAL ENGINEERING, 1997, 44 (05) : 374 - 385
  • [5] Electromagnetic brain mapping
    Baillet, S
    Mosher, JC
    Leahy, RM
    [J]. IEEE SIGNAL PROCESSING MAGAZINE, 2001, 18 (06) : 14 - 30
  • [6] Barkan H, 2014, NEUROLOGY S, V82, P6
  • [7] Bjorck A., 1996, Numerical methods for least squares problems, DOI DOI 10.1137/1.9781611971484
  • [8] Priorconditioners for linear systems
    Calvetti, D
    Somersalo, E
    [J]. INVERSE PROBLEMS, 2005, 21 (04) : 1397 - 1418
  • [9] Calvetti D, 2015, ARXIV150306844
  • [10] Preconditioned iterative methods for linear discrete ill-posed problems from a Bayesian inversion perspective
    Calvetti, Daniela
    [J]. JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2007, 198 (02) : 378 - 395