Development of prediction models for lymph node metastasis in endometrioid endometrial carcinoma

被引:9
|
作者
Berg, Hege F. [1 ,2 ,3 ]
Ju, Zhenlin [4 ]
Myrvold, Madeleine [1 ,2 ,3 ]
Fasmer, Kristine E. [5 ,6 ]
Halle, Mari K. [1 ,2 ,3 ]
Hoivik, Erling A. [1 ,2 ,3 ]
Westin, Shannon N. [7 ]
Trovik, Jone [1 ,2 ,3 ]
Haldorsen, Ingfrid S. [5 ,6 ]
Mills, Gordon B. [8 ]
Krakstad, Camilla [1 ,2 ,3 ]
Werner, Henrica M. J. [1 ,2 ,3 ,9 ]
机构
[1] Univ Bergen, Ctr Canc Biomarkers, Bergen, Norway
[2] Univ Bergen, Dept Clin Sci, Bergen, Norway
[3] Haukeland Hosp, Dept Obstet & Gynaecol, Bergen, Norway
[4] Univ Texas MD Anderson Canc Ctr, Bioinformat & Computat Biol, Houston, TX 77030 USA
[5] Univ Bergen, Sect Radiol, Dept Clin Med, Bergen, Norway
[6] Haukeland Hosp, Dept Radiol, Bergen, Norway
[7] Univ Texas MD Anderson Canc Ctr, Dept Gynaecol Oncol & Reprod Med, Houston, TX 77030 USA
[8] Oregon Hlth & Sci Univ, Dept Cell Dev & Canc Biol, Knight Canc Inst, Portland, OR 97201 USA
[9] Maastricht Univ, Med Ctr, Dept Obstet & Gynecol, Sch Oncol & Dev Biol, Maastricht, Netherlands
关键词
PREOPERATIVE PREDICTION; RADIOMICS NOMOGRAM; CANCER; LYMPHADENECTOMY; FIBRONECTIN; RISK; MRI; PREVALENCE; EXPRESSION; INVASION;
D O I
10.1038/s41416-020-0745-6
中图分类号
R73 [肿瘤学];
学科分类号
100214 ;
摘要
Background In endometrioid endometrial cancer (EEC), current clinical algorithms do not accurately predict patients with lymph node metastasis (LNM), leading to both under- and over-treatment. We aimed to develop models that integrate protein data with clinical information to identify patients requiring more aggressive surgery, including lymphadenectomy. Methods Protein expression profiles were generated for 399 patients using reverse-phase protein array. Three generalised linear models were built on proteins and clinical information (model 1), also with magnetic resonance imaging included (model 2), and on proteins only (model 3), using a training set, and tested in independent sets. Gene expression data from the tumours were used for confirmatory testing. Results LNM was predicted with area under the curve 0.72-0.89 and cyclin D1; fibronectin and grade were identified as important markers. High levels of fibronectin and cyclin D1 were associated with poor survival (p = 0.018), and with markers of tumour aggressiveness. Upregulation of both FN1 and CCND1 messenger RNA was related to cancer invasion and mesenchymal phenotype. Conclusions We demonstrate that data-driven prediction models, adding protein markers to clinical information, have potential to significantly improve preoperative identification of patients with LNM in EEC.
引用
收藏
页码:1014 / 1022
页数:9
相关论文
共 50 条
  • [21] Clinical prediction models for cervical lymph node metastasis of papillary thyroid carcinoma
    Shuli Luo
    Fenghua Lai
    Ruiming Liang
    Bin Li
    Yufei He
    Wenke Chen
    Jiayuan Zhang
    Xuyang Li
    Tianyi Xu
    Yingtong Hou
    Yihao Liu
    Jianyan Long
    Zheng Yang
    Xinwen Chen
    Endocrine, 2024, 84 : 646 - 655
  • [22] External Validation of Models for Prediction of Lymph Node Metastasis in Urothelial Carcinoma of the Bladder
    Ku, Ja Hyeon
    Kim, Myong
    Byun, Seok-Soo
    Jeong, Hyeon
    Kwak, Cheol
    Kim, Hyeon Hoe
    Lee, Sang Eun
    PLOS ONE, 2015, 10 (10):
  • [23] Clinical prediction models for cervical lymph node metastasis of papillary thyroid carcinoma
    Luo, Shuli
    Lai, Fenghua
    Liang, Ruiming
    Li, Bin
    He, Yufei
    Chen, Wenke
    Zhang, Jiayuan
    Li, Xuyang
    Xu, Tianyi
    Hou, Yingtong
    Liu, Yihao
    Long, Jianyan
    Yang, Zheng
    Chen, Xinwen
    ENDOCRINE, 2024, 84 (02) : 646 - 655
  • [24] LYMPH NODE METASTASIS PREDICTION IN EARLY STAGE ENDOMETRIAL CANCER
    Varli, B.
    Taskin, S.
    Koyuncu, K.
    Ortac, F.
    INTERNATIONAL JOURNAL OF GYNECOLOGICAL CANCER, 2015, 25 (09) : 312 - 312
  • [25] Preoperative Prediction Model of Lymph Node Metastasis in Endometrial Cancer
    Lee, Jung-Yun
    Jung, Dae-Chul
    Park, Se-Hyun
    Lim, Myung-Chul
    Seo, Sang-Soo
    Park, Sang-Yoon
    Kang, Sokbom
    INTERNATIONAL JOURNAL OF GYNECOLOGICAL CANCER, 2010, 20 (08) : 1350 - 1355
  • [26] Involvement of microsatellite instability in lymph node metastasis of endometrial carcinoma
    Ohwada, M
    Suzuki, M
    Kohno, T
    Saga, Y
    Takei, Y
    Jobo, T
    Kuramoto, H
    Sato, I
    CANCER GENETICS AND CYTOGENETICS, 2002, 132 (02) : 152 - 155
  • [27] The prediction of para-aortic lymph node metastasis in endometrioid adenocarcinoma of endometrium
    Numanoglu, C.
    Esmer, A. Corbacioglu
    Ulker, V.
    Goksedef, B. P. Cilesiz
    Han, A.
    Akbayir, O.
    Guraslan, B.
    JOURNAL OF OBSTETRICS AND GYNAECOLOGY, 2014, 34 (02) : 177 - 181
  • [28] SENSITIVITY AND SPECIFICITY OF SENTINEL LYMPH NODE BIOPSY IN PREDICTING LYMPH NODE METASTASIS IN ENDOMETRIAL CARCINOMA
    Sarkar, Agniv
    Mahapatra, Manoranjan
    Parija, Jita
    Nayak, Bhagyalaxmi
    INTERNATIONAL JOURNAL OF GYNECOLOGICAL CANCER, 2023, 33 : A156 - A156
  • [29] INCIDENCE OF LYMPH NODE METASTASIS IN APPARENT EARLY STAGE ENDOMETRIOID OVARIAN CARCINOMA
    Nasioudis, D.
    Latif, N.
    Haggerty, A.
    Cory, L.
    Giuntoli, R. L., II
    Kim, S. H.
    Morgan, M. A.
    Ko, E. M.
    INTERNATIONAL JOURNAL OF GYNECOLOGICAL CANCER, 2020, 30 : A41 - A42
  • [30] Prediction of supraclavicular lymph node metastasis in breast carcinoma
    Chen, SC
    Chen, MF
    Hwang, TL
    Chao, TC
    Lo, YF
    Hsueh, S
    Chang, JTC
    Leung, WM
    INTERNATIONAL JOURNAL OF RADIATION ONCOLOGY BIOLOGY PHYSICS, 2002, 52 (03): : 614 - 619