Development of prediction models for lymph node metastasis in endometrioid endometrial carcinoma

被引:9
|
作者
Berg, Hege F. [1 ,2 ,3 ]
Ju, Zhenlin [4 ]
Myrvold, Madeleine [1 ,2 ,3 ]
Fasmer, Kristine E. [5 ,6 ]
Halle, Mari K. [1 ,2 ,3 ]
Hoivik, Erling A. [1 ,2 ,3 ]
Westin, Shannon N. [7 ]
Trovik, Jone [1 ,2 ,3 ]
Haldorsen, Ingfrid S. [5 ,6 ]
Mills, Gordon B. [8 ]
Krakstad, Camilla [1 ,2 ,3 ]
Werner, Henrica M. J. [1 ,2 ,3 ,9 ]
机构
[1] Univ Bergen, Ctr Canc Biomarkers, Bergen, Norway
[2] Univ Bergen, Dept Clin Sci, Bergen, Norway
[3] Haukeland Hosp, Dept Obstet & Gynaecol, Bergen, Norway
[4] Univ Texas MD Anderson Canc Ctr, Bioinformat & Computat Biol, Houston, TX 77030 USA
[5] Univ Bergen, Sect Radiol, Dept Clin Med, Bergen, Norway
[6] Haukeland Hosp, Dept Radiol, Bergen, Norway
[7] Univ Texas MD Anderson Canc Ctr, Dept Gynaecol Oncol & Reprod Med, Houston, TX 77030 USA
[8] Oregon Hlth & Sci Univ, Dept Cell Dev & Canc Biol, Knight Canc Inst, Portland, OR 97201 USA
[9] Maastricht Univ, Med Ctr, Dept Obstet & Gynecol, Sch Oncol & Dev Biol, Maastricht, Netherlands
关键词
PREOPERATIVE PREDICTION; RADIOMICS NOMOGRAM; CANCER; LYMPHADENECTOMY; FIBRONECTIN; RISK; MRI; PREVALENCE; EXPRESSION; INVASION;
D O I
10.1038/s41416-020-0745-6
中图分类号
R73 [肿瘤学];
学科分类号
100214 ;
摘要
Background In endometrioid endometrial cancer (EEC), current clinical algorithms do not accurately predict patients with lymph node metastasis (LNM), leading to both under- and over-treatment. We aimed to develop models that integrate protein data with clinical information to identify patients requiring more aggressive surgery, including lymphadenectomy. Methods Protein expression profiles were generated for 399 patients using reverse-phase protein array. Three generalised linear models were built on proteins and clinical information (model 1), also with magnetic resonance imaging included (model 2), and on proteins only (model 3), using a training set, and tested in independent sets. Gene expression data from the tumours were used for confirmatory testing. Results LNM was predicted with area under the curve 0.72-0.89 and cyclin D1; fibronectin and grade were identified as important markers. High levels of fibronectin and cyclin D1 were associated with poor survival (p = 0.018), and with markers of tumour aggressiveness. Upregulation of both FN1 and CCND1 messenger RNA was related to cancer invasion and mesenchymal phenotype. Conclusions We demonstrate that data-driven prediction models, adding protein markers to clinical information, have potential to significantly improve preoperative identification of patients with LNM in EEC.
引用
收藏
页码:1014 / 1022
页数:9
相关论文
共 50 条
  • [1] Development of prediction models for lymph node metastasis in endometrioid endometrial carcinoma
    Hege F. Berg
    Zhenlin Ju
    Madeleine Myrvold
    Kristine E. Fasmer
    Mari K. Halle
    Erling A. Hoivik
    Shannon N. Westin
    Jone Trovik
    Ingfrid S. Haldorsen
    Gordon B. Mills
    Camilla Krakstad
    Henrica M. J. Werner
    British Journal of Cancer, 2020, 122 : 1014 - 1022
  • [2] PREDICTION OF PELVIC LYMPH NODE METASTASIS IN ENDOMETRIOID ENDOMETRIAL CARCINOMA
    Jaishuen, A.
    Petsuksiri, J.
    Karavanich, P.
    Achariyapota, V.
    Kuljarusnont, S.
    Inthasorn, P.
    INTERNATIONAL JOURNAL OF GYNECOLOGICAL CANCER, 2019, 29 : A328 - A328
  • [3] INTEGRATIVE MODEL FOR PREDICTION OF LYMPH NODE METASTASIS IN ENDOMETRIOID ENDOMETRIAL CARCINOMA
    Berg, H. F.
    Lu, Z.
    Myrvold, M.
    Fasmer, K. E.
    Halle, M. K.
    Westin, S. N.
    Trovik, J.
    Haldorsen, I. S.
    Mills, G. B.
    Krakstad, C.
    Werner, H. M.
    INTERNATIONAL JOURNAL OF GYNECOLOGICAL CANCER, 2019, 29 : A109 - A110
  • [4] Development of a novel predictive model for lymph node metastasis in patients with endometrial endometrioid carcinoma
    Xingdan Guo
    Chunhua Lin
    Jing Zhao
    Mi Tang
    BMC Cancer, 22
  • [5] Development of a novel predictive model for lymph node metastasis in patients with endometrial endometrioid carcinoma
    Guo, Xingdan
    Lin, Chunhua
    Zhao, Jing
    Tang, Mi
    BMC CANCER, 2022, 22 (01)
  • [6] Prediction of lymph node metastasis in patients with endometrioid endometrial cancer using expression microarray
    Bidus, MA
    Risinger, JI
    Chandramouli, GVR
    Dainty, LA
    Litzi, TJ
    Berchuck, A
    Barrett, JC
    Maxwell, GL
    CLINICAL CANCER RESEARCH, 2006, 12 (01) : 83 - 88
  • [7] ENDOMETRIOID ENDOMETRIAL CARCINOMA WITH LYMPH NODE METASTASIS TREATED WITH ADJUVANT PACLITAXEL/CARBOPLATIN CHEMOTHERAPY
    Otsuka, I.
    Matsuura, T.
    Enmi, S.
    Suemitsu, T.
    Suzuki, Y.
    Teraoka, K.
    Furusawa, Y.
    Shimizu, Y.
    Kameda, S.
    INTERNATIONAL JOURNAL OF GYNECOLOGICAL CANCER, 2014, 24 (09) : 1539 - 1539
  • [8] Gene expression signature based prediction of lymph node metastasis in patients with endometrioid endometrial cancer
    Chon, H. S.
    Kang, S.
    Lee, J. K.
    Gonzalez-Bosquet, J.
    Wenham, R. M.
    McClung, C.
    Abdallah, R.
    GYNECOLOGIC ONCOLOGY, 2017, 145 : 130 - 130
  • [9] Development and validation of a prediction model for lymph node metastasis based on molecular classification in endometrial carcinoma
    Han, Qiuyue
    Jiang, Quanhong
    Xu, Jiaqi
    Zhang, Yuan
    Li, Li
    Kong, Beihua
    Song, Kun
    Bu, Hualei
    Dong, Ruifen
    JOURNAL OF CLINICAL ONCOLOGY, 2024, 42 (16)
  • [10] The Lymphatic Dissemination and predictors of Lymph Node Metastasis in Endometrioid Endometrial Cancer
    Tasci, Tolga
    Ureyen, Isin
    Karalok, Alper
    Kocak, Ozgur
    Koc, Sevgi
    Tulunay, Gokhan
    Turan, Taner
    GAZI MEDICAL JOURNAL, 2015, 26 (04): : 133 - 138