Invariant object recognition using a neural template classifier

被引:2
作者
Tang, HW
Srinivasan, V
Ong, SH
机构
[1] Department of Electrical Engineering, National University of Singapore
关键词
object recognition; neural networks; invariance; template classifier;
D O I
10.1016/0262-8856(95)01065-3
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
This paper describes an efficient two-stage neural network for invariant object recognition. It consists of a feature extractor trained by an ART-like fast saturation learning scheme and a delta-rule trained classifier. Objects, represented as edge strength maps derived from raw input images, are scaled to a normalized size and rotated in discrete steps to generate a sequence of localized input feature vectors. The network outputs identify the object and permit the calculation of a confidence level. Experiments show that the system works well even when there is noise and occlusion.
引用
收藏
页码:473 / 483
页数:11
相关论文
共 34 条
[21]  
LINSKER R, 1988, IEEE COMPUT, V21, P105, DOI DOI 10.1109/2.36
[22]   A UNIFIED APPROACH TO BOUNDARY PERCEPTION - EDGES, TEXTURES, AND ILLUSORY CONTOURS [J].
MANJUNATH, BS ;
CHELLAPPA, R .
IEEE TRANSACTIONS ON NEURAL NETWORKS, 1993, 4 (01) :96-108
[23]  
Marr D., 1982, VISIO
[24]   REVIEW OF SHAPE CODING TECHNIQUES [J].
MARSHALL, S .
IMAGE AND VISION COMPUTING, 1989, 7 (04) :281-294
[25]  
MINNIX JI, 1990, SPIE, V1360, P58
[26]   VISUAL CORTICAL-NEURONS AS LOCALIZED SPATIAL-FREQUENCY FILTERS [J].
POLLEN, DA ;
RONNER, SF .
IEEE TRANSACTIONS ON SYSTEMS MAN AND CYBERNETICS, 1983, 13 (05) :907-916
[27]   THE GENERALIZED GABOR SCHEME OF IMAGE REPRESENTATION IN BIOLOGICAL AND MACHINE VISION [J].
PORAT, M ;
ZEEVI, YY .
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 1988, 10 (04) :452-468
[28]  
Rosenfeld A., 1984, MULTIRESOLUTION IMAG
[29]  
Rumelhart D. E., 1986, PARALLEL DISTRIBUTED, V1
[30]  
SUETENS P, 1992, COMPUT SURV, V24, P5, DOI 10.1145/128762.128763