ncRDense: A novel computational approach for classification of non-coding RNA family by deep learning

被引:12
|
作者
Chantsalnyam, Tuvshinbayar [1 ]
Siraj, Arslan [1 ]
Tayara, Hilal [2 ]
Chong, Kil To [1 ,3 ]
机构
[1] Jeonbuk Natl Univ, Dept Elect & Informat Engn, Jeonju 54896, South Korea
[2] Jeonbuk Natl Univ, Sch Int Engn & Sci, Jeonju 54896, South Korea
[3] Jeonbuk Natl Univ, Adv Elect & Informat Res Ctr, Jeonju 54896, South Korea
基金
新加坡国家研究基金会;
关键词
Deep learning; Densenet; Classification; Non-coding RNA; Feature encoding; IDENTIFICATION;
D O I
10.1016/j.ygeno.2021.07.004
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
With the rapidly growing importance of biological research, non-coding RNAs (ncRNA) attract more attention in biology and bioinformatics. They play vital roles in biological processes such as transcription and translation. Classification of ncRNAs is essential to our understanding of disease mechanisms and treatment design. Many approaches to ncRNA classification have been developed, several of which use machine learning and deep learning. In this paper, we construct a novel deep learning-based architecture, ncRDense, to effectively classify and distinguish ncRNA families. In a comparative study, our model produces comparable results with existing state-of-the-art methods. Finally, we built a freely accessible web server for the ncRDense tool, which is available at http://nsclbio.jbnu.ac.kr/tools/ncRDense/.
引用
收藏
页码:3030 / 3038
页数:9
相关论文
共 50 条
  • [31] A RNA-Sequencing approach for the identification of novel long non-coding RNA biomarkers in colorectal cancer
    Atsushi Yamada
    Pingjian Yu
    Wei Lin
    Yoshinaga Okugawa
    C. Richard Boland
    Ajay Goel
    Scientific Reports, 8
  • [32] A RNA-Sequencing approach for the identification of novel long non-coding RNA biomarkers in colorectal cancer
    Yamada, Atsushi
    Yu, Pingjian
    Lin, Wei
    Okugawa, Yoshinaga
    Boland, C. Richard
    Goel, Ajay
    SCIENTIFIC REPORTS, 2018, 8
  • [33] Computational recognition for long non-coding RNA (lncRNA): Software and databases
    Yotsukura, Sohiya
    duverle, David
    Hancock, Timothy
    Natsume-Kitatani, Yayoi
    Mamitsuka, Hiroshi
    BRIEFINGS IN BIOINFORMATICS, 2017, 18 (01) : 9 - 27
  • [34] Deep sequencing of small RNA transcriptome reveals novel non-coding RNAs in hepatocellular carcinoma
    Law, Priscilla T. -Y.
    Qin, Hao
    Ching, Arthur K. -K.
    Lai, Keng Po
    Co, Ngai Na
    He, Mian
    Lung, Raymond W. -M.
    Chan, Anthony W. -H.
    Chan, Ting-Fung
    Wong, Nathalie
    JOURNAL OF HEPATOLOGY, 2013, 58 (06) : 1165 - 1173
  • [35] Computational prediction of novel non-coding RNAs in Arabidopsis thaliana
    Dandan Song
    Yang Yang
    Bin Yu
    Binglian Zheng
    Zhidong Deng
    Bao-Liang Lu
    Xuemei Chen
    Tao Jiang
    BMC Bioinformatics, 10
  • [36] RNAdetect: efficient computational detection of novel non-coding RNAs
    Chen, Chun-Chi
    Qian, Xiaoning
    Yoon, Byung-Jun
    BIOINFORMATICS, 2019, 35 (07) : 1133 - 1141
  • [37] Computational prediction of novel non-coding RNAs in Arabidopsis thaliana
    Song, Dandan
    Yang, Yang
    Yu, Bin
    Zheng, Binglian
    Deng, Zhidong
    Lu, Bao-Liang
    Chen, Xuemei
    Jiang, Tao
    BMC BIOINFORMATICS, 2009, 10
  • [38] Non-coding RNA in cancer
    Yan, Huiwen
    Bu, Pengcheng
    NON-CODING GENOME, 2021, 65 (04): : 625 - 639
  • [39] Non-coding RNA and cholesteatoma
    Jovanovic, Ivan
    Zivkovic, Maja
    Jesic, Snezana
    Stankovic, Aleksandra
    LARYNGOSCOPE INVESTIGATIVE OTOLARYNGOLOGY, 2022, 7 (01): : 60 - 66
  • [40] Truly non-coding RNA ?
    Paysant, Julie
    BIOFUTUR, 2014, (357) : 13 - 13