ncRDense: A novel computational approach for classification of non-coding RNA family by deep learning

被引:12
|
作者
Chantsalnyam, Tuvshinbayar [1 ]
Siraj, Arslan [1 ]
Tayara, Hilal [2 ]
Chong, Kil To [1 ,3 ]
机构
[1] Jeonbuk Natl Univ, Dept Elect & Informat Engn, Jeonju 54896, South Korea
[2] Jeonbuk Natl Univ, Sch Int Engn & Sci, Jeonju 54896, South Korea
[3] Jeonbuk Natl Univ, Adv Elect & Informat Res Ctr, Jeonju 54896, South Korea
基金
新加坡国家研究基金会;
关键词
Deep learning; Densenet; Classification; Non-coding RNA; Feature encoding; IDENTIFICATION;
D O I
10.1016/j.ygeno.2021.07.004
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
With the rapidly growing importance of biological research, non-coding RNAs (ncRNA) attract more attention in biology and bioinformatics. They play vital roles in biological processes such as transcription and translation. Classification of ncRNAs is essential to our understanding of disease mechanisms and treatment design. Many approaches to ncRNA classification have been developed, several of which use machine learning and deep learning. In this paper, we construct a novel deep learning-based architecture, ncRDense, to effectively classify and distinguish ncRNA families. In a comparative study, our model produces comparable results with existing state-of-the-art methods. Finally, we built a freely accessible web server for the ncRDense tool, which is available at http://nsclbio.jbnu.ac.kr/tools/ncRDense/.
引用
收藏
页码:3030 / 3038
页数:9
相关论文
共 50 条
  • [21] Non-coding RNA in Neurodegeneration
    Ciccodicola, Alfredo
    Ambrosio, Maria Rosaria
    Scarpato, Margherita
    Costa, Valerio
    CURRENT GERIATRICS REPORTS, 2012, 1 (04): : 219 - 228
  • [22] A Robust and Precise ConvNet for Small Non-Coding RNA Classification (RPC-snRC)
    Asim, Muhammad Nabeel
    Malik, Muhammad Imran
    Zehe, Christoph
    Trygg, Johan
    Dengel, Andreas
    Ahmed, Sheraz
    IEEE ACCESS, 2021, 9 : 19379 - 19390
  • [23] Non-coding RNA in Neurodegeneration
    Alfredo Ciccodicola
    Maria Rosaria Ambrosio
    Margherita Scarpato
    Valerio Costa
    Current Geriatrics Reports, 2012, 1 (4) : 219 - 228
  • [24] Statistical analysis of non-coding RNA data
    He, Qianchuan
    Liu, Yang
    Sun, Wei
    CANCER LETTERS, 2018, 417 : 161 - 167
  • [25] Esre: A novel essential non-coding RNA in Escherichia coli
    Chen, Zhichao
    Wang, Yi
    Li, Yarong
    Li, Yue
    Fu, Nan
    Ye, Jiang
    Zhang, Huizhan
    FEBS LETTERS, 2012, 586 (08) : 1195 - 1200
  • [26] The Non-Coding RNA Ontology (NCRO): a comprehensive resource for the unification of non-coding RNA biology
    Huang, Jingshan
    Eilbeck, Karen
    Smith, Barry
    Blake, Judith A.
    Dou, Dejing
    Huang, Weili
    Natale, Darren A.
    Ruttenberg, Alan
    Huan, Jun
    Zimmermann, Michael T.
    Jiang, Guoqian
    Lin, Yu
    Wu, Bin
    Strachan, Harrison J.
    He, Yongqun
    Zhang, Shaojie
    Wang, Xiaowei
    Liu, Zixing
    Borchert, Glen M.
    Tan, Ming
    JOURNAL OF BIOMEDICAL SEMANTICS, 2016, 7
  • [27] The Non-Coding RNA Ontology (NCRO): a comprehensive resource for the unification of non-coding RNA biology
    Jingshan Huang
    Karen Eilbeck
    Barry Smith
    Judith A. Blake
    Dejing Dou
    Weili Huang
    Darren A. Natale
    Alan Ruttenberg
    Jun Huan
    Michael T. Zimmermann
    Guoqian Jiang
    Yu Lin
    Bin Wu
    Harrison J. Strachan
    Yongqun He
    Shaojie Zhang
    Xiaowei Wang
    Zixing Liu
    Glen M. Borchert
    Ming Tan
    Journal of Biomedical Semantics, 7
  • [28] Non-coding RNAs: Classification, Biology and Functioning
    Hombach, Sonja
    Kretz, Markus
    NON-CODING RNAS IN COLORECTAL CANCER, 2016, 937 : 3 - 17
  • [29] A novel type of non-coding RNA expressed in the rat brain
    Komine, Y
    Tanaka, NK
    Yano, R
    Takai, S
    Yuasa, S
    Shiroishi, T
    Tsuchiya, K
    Yamamori, T
    MOLECULAR BRAIN RESEARCH, 1999, 66 (1-2): : 1 - 13
  • [30] Non-coding RNA Associated Competitive Endogenous RNA Regulatory Network: Novel Therapeutic Approach in Liver Fibrosis
    Riaz, Farooq
    Li, Dongmin
    CURRENT GENE THERAPY, 2019, 19 (05) : 305 - 317