First-Principles Prediction of New Complex Transition Metal Hydrides for High Temperature Applications

被引:13
作者
Nicholson, Kelly M. [1 ]
Sholl, David S. [1 ]
机构
[1] Georgia Inst Technol, Sch Chem & Biomol Engn, Atlanta, GA 30332 USA
关键词
DENSITY-FUNCTIONAL THEORY; TOTAL-ENERGY CALCULATIONS; AUGMENTED-WAVE METHOD; LINEAR PDH2 COMPLEX; RUTHENIUM HYDRIDE; BASIS-SET; TERNARY; DYNAMICS; STORAGE; NA2PDH2;
D O I
10.1021/ic501992x
中图分类号
O61 [无机化学];
学科分类号
070301 ; 081704 ;
摘要
Metal hydrides with high thermodynamic stability are desirable for high-temperature applications, such as those that require high hydrogen release temperatures or low hydrogen overpressures. First-principles calculations have been used previously to identify complex transition metal hydrides (CTMHs) for high temperature use by screening materials with experimentally known structures. Here, we extend our previous screening of CTMHs with a library of 149 proposed materials based on known prototype structures and charge balancing rules. These proposed materials are typically related to known materials by cation substitution. Our semiautomated, high-throughput screening uses density functional theory (DFT) and grand canonical linear programming (GCLP) methods to compute thermodynamic properties and phase diagrams: 81 of the 149 materials are found to be thermodynamically stable. We identified seven proposed materials that release hydrogen at higher temperatures than the associated binary hydrides and at high temperature, T > 1000 K, for 1 bar H2 overpressure. Our results indicate that there are many novel CTMH compounds that are thermodynamically stable, and the computed thermodynamic data and phase diagrams should be useful for selecting materials and operating parameters for high temperature metal hydride applications.
引用
收藏
页码:11849 / 11860
页数:12
相关论文
共 52 条
[31]   NA2PDH2, A HYDRIDE WITH A NOVEL LINEAR [PDH2] COMPLEX [J].
NOREUS, D ;
TORNROOS, KW ;
BORJE, A ;
SZABO, T ;
BRONGER, W ;
SPITTANK, H ;
AUFFERMANN, G ;
MULLER, P .
JOURNAL OF THE LESS-COMMON METALS, 1988, 139 (02) :233-239
[32]   INELASTIC NEUTRON-SCATTERING STUDIES OF A NOVEL LINEAR PDH2 COMPLEX IN NA2PDH2 [J].
NOREUS, D ;
TOMKINSON, J .
CHEMICAL PHYSICS LETTERS, 1989, 154 (05) :439-442
[33]   Python']Python Materials Genomics (pymatgen): A robust, open-source python']python library for materials analysis [J].
Ong, Shyue Ping ;
Richards, William Davidson ;
Jain, Anubhav ;
Hautier, Geoffroy ;
Kocher, Michael ;
Cholia, Shreyas ;
Gunter, Dan ;
Chevrier, Vincent L. ;
Persson, Kristin A. ;
Ceder, Gerbrand .
COMPUTATIONAL MATERIALS SCIENCE, 2013, 68 :314-319
[34]   First-principles prediction of a ground state crystal structure of magnesium borohydride [J].
Ozolins, V. ;
Majzoub, E. H. ;
Wolverton, C. .
PHYSICAL REVIEW LETTERS, 2008, 100 (13)
[35]  
Ozolins V., 2009, J PHYS CONF SER, V180
[36]   Spectroscopy and bonding in ternary metal hydride complexes-Potential hydrogen storage media [J].
Parker, Stewart F. .
COORDINATION CHEMISTRY REVIEWS, 2010, 254 (3-4) :215-234
[37]  
Parlinski K., 2005, PHONON
[38]   ATOMS, MOLECULES, SOLIDS, AND SURFACES - APPLICATIONS OF THE GENERALIZED GRADIENT APPROXIMATION FOR EXCHANGE AND CORRELATION [J].
PERDEW, JP ;
CHEVARY, JA ;
VOSKO, SH ;
JACKSON, KA ;
PEDERSON, MR ;
SINGH, DJ ;
FIOLHAIS, C .
PHYSICAL REVIEW B, 1992, 46 (11) :6671-6687
[39]   Mg2NiH4 synthesis and decomposition reactions [J].
Polanski, M. ;
Nielsen, T. K. ;
Kunce, I. ;
Norek, M. ;
Plocinski, T. ;
Jaroszewicz, L. R. ;
Gundlach, C. ;
Jensen, T. R. ;
Bystrzycki, J. .
INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2013, 38 (10) :4003-4010
[40]   Synthesis of Li2PtH6 using high pressure: Completion of the homologous series A2PtH6 (A=alkali metal) [J].
Puhakainen, Kati ;
Stoyanov, Emil ;
Evans, Michael J. ;
Leinenweber, Kurt ;
Haeussermann, Ulrich .
JOURNAL OF SOLID STATE CHEMISTRY, 2010, 183 (08) :1785-1789