First-Principles Prediction of New Complex Transition Metal Hydrides for High Temperature Applications

被引:13
作者
Nicholson, Kelly M. [1 ]
Sholl, David S. [1 ]
机构
[1] Georgia Inst Technol, Sch Chem & Biomol Engn, Atlanta, GA 30332 USA
关键词
DENSITY-FUNCTIONAL THEORY; TOTAL-ENERGY CALCULATIONS; AUGMENTED-WAVE METHOD; LINEAR PDH2 COMPLEX; RUTHENIUM HYDRIDE; BASIS-SET; TERNARY; DYNAMICS; STORAGE; NA2PDH2;
D O I
10.1021/ic501992x
中图分类号
O61 [无机化学];
学科分类号
070301 ; 081704 ;
摘要
Metal hydrides with high thermodynamic stability are desirable for high-temperature applications, such as those that require high hydrogen release temperatures or low hydrogen overpressures. First-principles calculations have been used previously to identify complex transition metal hydrides (CTMHs) for high temperature use by screening materials with experimentally known structures. Here, we extend our previous screening of CTMHs with a library of 149 proposed materials based on known prototype structures and charge balancing rules. These proposed materials are typically related to known materials by cation substitution. Our semiautomated, high-throughput screening uses density functional theory (DFT) and grand canonical linear programming (GCLP) methods to compute thermodynamic properties and phase diagrams: 81 of the 149 materials are found to be thermodynamically stable. We identified seven proposed materials that release hydrogen at higher temperatures than the associated binary hydrides and at high temperature, T > 1000 K, for 1 bar H2 overpressure. Our results indicate that there are many novel CTMH compounds that are thermodynamically stable, and the computed thermodynamic data and phase diagrams should be useful for selecting materials and operating parameters for high temperature metal hydride applications.
引用
收藏
页码:11849 / 11860
页数:12
相关论文
共 52 条
[1]  
[Anonymous], 1987, CHEST
[2]   PROJECTOR AUGMENTED-WAVE METHOD [J].
BLOCHL, PE .
PHYSICAL REVIEW B, 1994, 50 (24) :17953-17979
[3]   Thermodynamics and dynamics of the Mg-Fe-H system and its potential for thermochemical thermal energy storage [J].
Bogdanovic, B ;
Reiser, A ;
Schlichte, K ;
Spliethoff, B ;
Tesche, B .
JOURNAL OF ALLOYS AND COMPOUNDS, 2002, 345 (1-2) :77-89
[4]   Li2PtH2, synthesis and structure [J].
Bronger, W ;
Brassard, LA .
ZEITSCHRIFT FUR ANORGANISCHE UND ALLGEMEINE CHEMIE, 1996, 622 (03) :462-464
[5]   SYNTHESIS, STRUCTURE AND PHASE-TRANSITION OF RB2PDH4 AND CS2PDH4 [J].
BRONGER, W ;
AUFFERMANN, G .
JOURNAL OF ALLOYS AND COMPOUNDS, 1992, 187 (01) :87-93
[6]   New ternary alkali-metal-transition-metal hydrides synthesized at high pressures: Characterization and properties [J].
Bronger, W ;
Auffermann, G .
CHEMISTRY OF MATERIALS, 1998, 10 (10) :2723-2732
[7]   AFLOW: An automatic framework for high-throughput materials discovery [J].
Curtarolo, Stefano ;
Setyawan, Wahyu ;
Hart, Gus L. W. ;
Jahnatek, Michal ;
Chepulskii, Roman V. ;
Taylor, Richard H. ;
Wanga, Shidong ;
Xue, Junkai ;
Yang, Kesong ;
Levy, Ohad ;
Mehl, Michael J. ;
Stokes, Harold T. ;
Demchenko, Denis O. ;
Morgan, Dane .
COMPUTATIONAL MATERIALS SCIENCE, 2012, 58 :218-226
[8]   High Temperature Metal Hydrides as Heat Storage Materials for Solar and Related Applications [J].
Felderhoff, Michael ;
Bogdanovic, Borislav .
INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, 2009, 10 (01) :325-344
[9]  
FIZ Karlsruhe, THE INORGANIC CRYSTA
[10]   State of the art on high temperature thermal energy storage for power generation. Part 1-Concepts, materials and modellization [J].
Gil, Antoni ;
Medrano, Marc ;
Martorell, Ingrid ;
Lazaro, Ana ;
Dolado, Pablo ;
Zalba, Belen ;
Cabeza, Luisa F. .
RENEWABLE & SUSTAINABLE ENERGY REVIEWS, 2010, 14 (01) :31-55