Finite element methods for elliptic optimal control problems with boundary observations
被引:8
|
作者:
Yan, Ming
论文数: 0引用数: 0
h-index: 0
机构:
Tianjin Univ Finance & Econ, Res Ctr Math & Econ, Tianjin 300222, Peoples R ChinaTianjin Univ Finance & Econ, Res Ctr Math & Econ, Tianjin 300222, Peoples R China
Yan, Ming
[1
]
Gong, Wei
论文数: 0引用数: 0
h-index: 0
机构:
Chinese Acad Sci, Acad Math & Syst Sci, LSEC, Inst Computat Math, Beijing 100190, Peoples R ChinaTianjin Univ Finance & Econ, Res Ctr Math & Econ, Tianjin 300222, Peoples R China
Gong, Wei
[2
]
Yan, Ningning
论文数: 0引用数: 0
h-index: 0
机构:
Chinese Acad Sci, NCMIS, LSEC, Acad Math & Syst Sci,Inst Syst Sci, Beijing 100190, Peoples R ChinaTianjin Univ Finance & Econ, Res Ctr Math & Econ, Tianjin 300222, Peoples R China
Yan, Ningning
[3
]
机构:
[1] Tianjin Univ Finance & Econ, Res Ctr Math & Econ, Tianjin 300222, Peoples R China
[2] Chinese Acad Sci, Acad Math & Syst Sci, LSEC, Inst Computat Math, Beijing 100190, Peoples R China
[3] Chinese Acad Sci, NCMIS, LSEC, Acad Math & Syst Sci,Inst Syst Sci, Beijing 100190, Peoples R China
A priori error estimates;
Boundary observations;
Finite elements;
Mixed finite elements;
Optimal control problemS;
DISCRETIZATION;
APPROXIMATION;
D O I:
10.1016/j.apnum.2014.11.011
中图分类号:
O29 [应用数学];
学科分类号:
070104 ;
摘要:
We study in this paper the finite element apprbximations to elliptic optimal control problems with boundary observations. The main feature of this kind of optimal control problems is that the observations or measurements are the outward normal derivatives of the state variable on the boundary, this reduces the regularity of solutions to the optimal control problems. We propose two kinds of finite element methods: the standard FEM and the mixed FEM, to efficiently approximate the underlying optimal control problems. For both cases we derive a priori error estimates for problems posed on polygonal domain. Some numerical experiments are carried out at the end of the paper to support our theoretical findings. (C) 2014 IMACS. Published by Elsevier B.V. All tights reserved.
机构:
Louisiana State Univ, Dept Math, Baton Rouge, LA 70803 USA
Louisiana State Univ, Ctr Computat & Technol, Baton Rouge, LA 70803 USALouisiana State Univ, Dept Math, Baton Rouge, LA 70803 USA
Brenner, S. C.
Sung, L-Y
论文数: 0引用数: 0
h-index: 0
机构:
Louisiana State Univ, Dept Math, Baton Rouge, LA 70803 USA
Louisiana State Univ, Ctr Computat & Technol, Baton Rouge, LA 70803 USALouisiana State Univ, Dept Math, Baton Rouge, LA 70803 USA
Sung, L-Y
Wollner, W.
论文数: 0引用数: 0
h-index: 0
机构:
Tech Univ Darmstadt, Dept Math, D-64293 Darmstadt, GermanyLouisiana State Univ, Dept Math, Baton Rouge, LA 70803 USA
机构:
Chinese Acad Sci, Inst Syst Sci, Acad Math & Syst Sci, Beijing 100190, Peoples R ChinaChinese Acad Sci, Inst Syst Sci, Acad Math & Syst Sci, Beijing 100190, Peoples R China
Yan, Ming
Chang, Lili
论文数: 0引用数: 0
h-index: 0
机构:
Chinese Acad Sci, Inst Syst Sci, Acad Math & Syst Sci, Beijing 100190, Peoples R China
Chinese Acad Sci, Inst Syst Sci, Acad Math & Syst Sci, LSEC, Beijing 100190, Peoples R ChinaChinese Acad Sci, Inst Syst Sci, Acad Math & Syst Sci, Beijing 100190, Peoples R China
Chang, Lili
Yan, Ningning
论文数: 0引用数: 0
h-index: 0
机构:
Chinese Acad Sci, Inst Syst Sci, Acad Math & Syst Sci, Beijing 100190, Peoples R China
Chinese Acad Sci, Inst Syst Sci, Acad Math & Syst Sci, LSEC, Beijing 100190, Peoples R ChinaChinese Acad Sci, Inst Syst Sci, Acad Math & Syst Sci, Beijing 100190, Peoples R China