Experimental research on the start-up characteristics and heat transfer performance of pulsating heat pipes with rectangular channels

被引:33
|
作者
Hua, Chao [1 ]
Wang, Xuehui [1 ]
Gao, Xu [2 ]
Zheng, Haoce [1 ]
Han, Xiaohong [1 ]
Chen, Guangming [1 ]
机构
[1] Zhejiang Univ, Inst Refrigerat & Cryogen, Key Lab Refrigerat & Cryogen Technol Zhejiang Pro, Hangzhou 310027, Zhejiang, Peoples R China
[2] State Key Lab Technol Space Cryogen Propellants, Beijing 100028, Peoples R China
关键词
Pulsating heat pipe; Heat transfer; Large diameter; Rectangular channels; Thermal resistance; THERMAL PERFORMANCE;
D O I
10.1016/j.applthermaleng.2017.02.106
中图分类号
O414.1 [热力学];
学科分类号
摘要
As a simple and efficient heat transfer device, the pulsating heat pipe (PHP) has been considered as one of the most effective methods to meet the challenges of high heat flux. Current studies focused on the heat transfer performance of the PHP with a small diameter (d <= 3 mm). However, the PHP with a relatively large diameter has better performance due to the larger heat capacity of the working fluid at the same filling ratio. Besides, compared with the PHP with circular channels, the PHP with rectangular channels has special advantages due to the unique structures. On the basis of this, an experimental setup of the PHP with rectangular channels of 4 mm equivalent inner diameter was built, and the influence of cross-section shape on the start-up characteristics and heat transfer performance of the PHP was investigated. The experimental results showed that the start-up process shifted from a "sudden start-up mode" to a "smooth start-up mode" with the increase of heating power. The start-up heating power of the PHP with rectangular channels was (1.5-2) times greater as the heating power of the PHP with circular channels. Furthermore, the thermal resistance of the PHP with rectangular channels was only (30-40)% of the PHP with circular channels, and the temperature differences between the evaporation section and the condensation section were (10-20) degrees C lower than those of the PHP with circular channels under the same filling ratio and heat flux. It could also be concluded from the results that the lowest thermal resistance was achieved when filling ratio was 0.3 within the range of experimental data. The experimental results will provide valuable references for the optimal design of the PHP and further studies. (C) 2017 Elsevier Ltd. All rights reserved.
引用
收藏
页码:1058 / 1062
页数:5
相关论文
共 50 条
  • [41] Performance characteristics of pulsating heat pipes as integral thermal spreaders
    Yang, Honghai
    Khandekar, Sameer
    Groll, Manfred
    INTERNATIONAL JOURNAL OF THERMAL SCIENCES, 2009, 48 (04) : 815 - 824
  • [42] Experimental study on heat transfer characteristics of a novel pulsating heat pipe with shunt-confluence structure
    Bao, Yunhao
    Wang, Huanguang
    Shao, Shuangquan
    INTERNATIONAL COMMUNICATIONS IN HEAT AND MASS TRANSFER, 2025, 162
  • [43] Heat transfer performance of closed loop pulsating heat pipes with methanol-based binary mixtures
    Cui, Xiaoyu
    Qiu, Ziqian
    Weng, Jianhua
    Li, Zhihua
    EXPERIMENTAL THERMAL AND FLUID SCIENCE, 2016, 76 : 253 - 263
  • [44] Investigation on start-up and thermal performance of the single-loop pulsating heat pipe with variable diameter
    Wang, Jiansheng
    Pan, Yu
    Liu, Xueling
    INTERNATIONAL JOURNAL OF HEAT AND MASS TRANSFER, 2021, 180
  • [45] A Comprehensive Experimental Investigation of the Performance of Closed-Loop Pulsating Heat Pipes
    Halimi, M.
    Nejad, A. Abbas
    Norouzi, M.
    JOURNAL OF HEAT TRANSFER-TRANSACTIONS OF THE ASME, 2017, 139 (09):
  • [46] Heat transfer performance of flag vortex generators in rectangular channels
    Gallegos, Ralph Kristoffer B.
    Sharma, Rajnish N.
    INTERNATIONAL JOURNAL OF THERMAL SCIENCES, 2019, 137 (26-44) : 26 - 44
  • [47] Analysis of heat transfer in unlooped and looped pulsating heat pipes
    Shafii, MB
    Faghri, A
    Zhang, Y
    INTERNATIONAL JOURNAL OF NUMERICAL METHODS FOR HEAT & FLUID FLOW, 2002, 12 (05) : 585 - 609
  • [48] An Experimental Investigation on Heat Transfer Performance of Nanofluid Pulsating Heat Pipe
    Hongwei Jia
    Li Jia
    Zetao Tan
    Journal of Thermal Science, 2013, 22 (05) : 484 - 490
  • [49] Experimental study on heat transfer performance of pulsating heat pipe with refrigerants
    Xingyu Wang
    Li Jia
    Journal of Thermal Science, 2016, 25 : 449 - 453
  • [50] Experimental Study on Heat Transfer Performance of Pulsating Heat Pipe with Refrigerants
    Wang Xingyu
    Jia Li
    JOURNAL OF THERMAL SCIENCE, 2016, 25 (05) : 449 - 453