Experimental research on the start-up characteristics and heat transfer performance of pulsating heat pipes with rectangular channels

被引:33
|
作者
Hua, Chao [1 ]
Wang, Xuehui [1 ]
Gao, Xu [2 ]
Zheng, Haoce [1 ]
Han, Xiaohong [1 ]
Chen, Guangming [1 ]
机构
[1] Zhejiang Univ, Inst Refrigerat & Cryogen, Key Lab Refrigerat & Cryogen Technol Zhejiang Pro, Hangzhou 310027, Zhejiang, Peoples R China
[2] State Key Lab Technol Space Cryogen Propellants, Beijing 100028, Peoples R China
关键词
Pulsating heat pipe; Heat transfer; Large diameter; Rectangular channels; Thermal resistance; THERMAL PERFORMANCE;
D O I
10.1016/j.applthermaleng.2017.02.106
中图分类号
O414.1 [热力学];
学科分类号
摘要
As a simple and efficient heat transfer device, the pulsating heat pipe (PHP) has been considered as one of the most effective methods to meet the challenges of high heat flux. Current studies focused on the heat transfer performance of the PHP with a small diameter (d <= 3 mm). However, the PHP with a relatively large diameter has better performance due to the larger heat capacity of the working fluid at the same filling ratio. Besides, compared with the PHP with circular channels, the PHP with rectangular channels has special advantages due to the unique structures. On the basis of this, an experimental setup of the PHP with rectangular channels of 4 mm equivalent inner diameter was built, and the influence of cross-section shape on the start-up characteristics and heat transfer performance of the PHP was investigated. The experimental results showed that the start-up process shifted from a "sudden start-up mode" to a "smooth start-up mode" with the increase of heating power. The start-up heating power of the PHP with rectangular channels was (1.5-2) times greater as the heating power of the PHP with circular channels. Furthermore, the thermal resistance of the PHP with rectangular channels was only (30-40)% of the PHP with circular channels, and the temperature differences between the evaporation section and the condensation section were (10-20) degrees C lower than those of the PHP with circular channels under the same filling ratio and heat flux. It could also be concluded from the results that the lowest thermal resistance was achieved when filling ratio was 0.3 within the range of experimental data. The experimental results will provide valuable references for the optimal design of the PHP and further studies. (C) 2017 Elsevier Ltd. All rights reserved.
引用
收藏
页码:1058 / 1062
页数:5
相关论文
共 50 条
  • [21] Visualization experiment on the start-up performance of the close loop pulsating heat pipe
    Wang, Xun
    Yang, Chengsi
    Mao, Xinxin
    Han, Tong
    ADVANCES IN CHEMICAL ENGINEERING II, PTS 1-4, 2012, 550-553 : 3150 - 3154
  • [22] Detailed visualization experiments on the start-up process and stable operation of pulsating heat pipes: Effects of dividing boards
    Cheng, Po -Shen
    Wong, Shwin-Chung
    APPLIED THERMAL ENGINEERING, 2024, 248
  • [23] Detailed visualization experiments on the start-up process and stable operation of pulsating heat pipes: Effects of internal diameter
    Cheng, Po-Shen
    Wong, Shwin-Chung
    INTERNATIONAL JOURNAL OF HEAT AND FLUID FLOW, 2024, 106
  • [24] Heat transfer performance of pulsating heat pipes with water-acetone mixtures
    Zhu, Yue
    Cui, Xiaoyu
    Han, Hua
    Sun, Shende
    Li, Zhihua
    Huagong Xuebao/CIESC Journal, 2014, 65 (08): : 2940 - 2947
  • [25] An experimental investigation on heat transfer performance of pulsating heat pipe
    Shang, Fumin
    Fan, Shilong
    Yang, Qingjing
    Liu, Jianhong
    JOURNAL OF MECHANICAL SCIENCE AND TECHNOLOGY, 2020, 34 (01) : 425 - 433
  • [26] An experimental investigation on heat transfer performance of pulsating heat pipe
    Fumin Shang
    Shilong Fan
    Qingjing Yang
    Jianhong Liu
    Journal of Mechanical Science and Technology, 2020, 34 : 425 - 433
  • [27] Experimental investigation of the influence of surfactant on the heat transfer performance of pulsating heat pipe
    Wang, X. H.
    Zheng, H. C.
    Si, M. Q.
    Han, X. H.
    Chen, G. M.
    INTERNATIONAL JOURNAL OF HEAT AND MASS TRANSFER, 2015, 83 : 586 - 590
  • [28] Experimental research on heat transfer of pulsating heat pipe
    Li Jia Yan Li Department of Power Engineering
    Journal of Thermal Science, 2008, 17 (02) : 181 - 185
  • [29] Start-up and quasi-steady operation characteristics of a loop pulsating heat pipe with multiple bends
    Fan, Shilong
    Shang, Fumin
    Xu, Zhiming
    Han, Zhimin
    JOURNAL OF MECHANICAL SCIENCE AND TECHNOLOGY, 2025, 39 (01) : 417 - 428
  • [30] Effects of evaporator wettability on the start-up and heat transfer performance of an oscillating heat pipe
    Chinchedu, Raghuvaran
    Kupireddi, Kiran Kumar
    Chandramohan, V. P.
    JOURNAL OF MECHANICAL SCIENCE AND TECHNOLOGY, 2025, 39 (01) : 453 - 463