SPATIAL-SPECTRAL GRAPH-BASED NONLINEAR EMBEDDING DIMENSIONALITY REDUCTION FOR HYPERSPECTRAL IMAGE CLASSIFICAITON

被引:0
|
作者
Zhang, Xiangrong [1 ]
Han, Yaru [1 ]
Huyan, Ning [1 ]
Li, Chen [2 ]
Feng, Jie [1 ]
Gao, Li [3 ]
Ma, Xiaoxiao [1 ]
机构
[1] Xidian Univ, Minist Educ, Key Lab Intelligent Percept & Image Understanding, Xian 710071, Peoples R China
[2] Xian Res Inst Surveying & Mapping, Xian 710000, Shaanxi, Peoples R China
[3] Xi An Jiao Tong Univ, Sch Elect & Informat Engn, Xian 710049, Peoples R China
来源
IGARSS 2018 - 2018 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM | 2018年
基金
中国国家自然科学基金;
关键词
hyperspectral classification; sparse and low-rank graph; dimensionality reduction;
D O I
暂无
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Dimensionality reduction (DR) is one of the most important tasks to improve the performance of hyperspectral images classification. Recently, a sparse and low-rank graph embedding based method (SLGE) has been proposed to describe the intrinsic structure of data combined with the local and global constraint simultaneously, which is effective to reduce the dimension of hyperspectral data and obtain a better classification accuracy. However, SLGE is based on an assumption that low-dimensional feature can be obtained utilizing a linear projection. Its performance may degrade under nonlinearly distributed data. Moreover, spatial prior of HSI is not considered in the framework. In this paper, we proposed a novel dimensionality reduction method named spatial-spectral graph-based non-linear embedding (SSGNE). To generate a new graph-trained data, the segmentation strategy based on superpixel is adopted. The spatial-spectral graph is constructed by constraining the sparsity and low rankness simultaneously on graph-trained data set. Finally, the kernel trick is adopted to extend the general graph embedding framework to nonlinearly space, which fully considers the complexity of real data. Experimental results show that the proposed method outperforms the state-of-the-art methods in terms of the classification accuracy.
引用
收藏
页码:8472 / 8475
页数:4
相关论文
共 50 条
  • [31] Spatial-Spectral Joint Classification of Hyperspectral Image With Locality and Edge Preserving
    Zhang, Hui
    Liu, Wanjun
    Lv, Huanhuan
    IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2020, 13 (13) : 2240 - 2250
  • [32] Dimensionality Reduction of Hyperspectral Image Based on Local Constrained Manifold Structure Collaborative Preserving Embedding
    Shi, Guangyao
    Luo, Fulin
    Tang, Yiming
    Li, Yuan
    REMOTE SENSING, 2021, 13 (07)
  • [33] Spectral transformation based on nonlinear principal component analysis for dimensionality reduction of hyperspectral images
    Licciardi, Giorgio
    Chanussot, Jocelyn
    EUROPEAN JOURNAL OF REMOTE SENSING, 2018, 51 (01) : 375 - 390
  • [34] GRAPH-CUT-BASED NODE EMBEDDING FOR DIMENSIONALITY REDUCTION AND CLASSIFICATION OF HYPERSPECTRAL REMOTE SENSING IMAGES
    Su, Yuanchao
    Jiang, Mengying
    Gao, Lianru
    You, Xueer
    Sun, Xu
    Li, Pengfei
    2022 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS 2022), 2022, : 1720 - 1723
  • [35] GRAPH-BASED SEMI-SUPERVISED HYPERSPECTRAL IMAGE CLASSIFICATION USING SPATIAL INFORMATION
    Jamshidpour, N.
    Homayouni, S.
    Safari, A.
    ISPRS INTERNATIONAL JOINT CONFERENCES OF THE 2ND GEOSPATIAL INFORMATION RESEARCH (GI RESEARCH 2017); THE 4TH SENSORS AND MODELS IN PHOTOGRAMMETRY AND REMOTE SENSING (SMPR 2017); THE 6TH EARTH OBSERVATION OF ENVIRONMENTAL CHANGES (EOEC 2017), 2017, 42-4 (W4): : 91 - 96
  • [36] GRAPH-BASED SEMI-SUPERVISED HYPERSPECTRAL IMAGE CLASSIFICATION USING SPATIAL INFORMATION
    Jamshidpour, Nasehe
    Homayouni, Saeid
    Safari, Abdolreza
    2016 8TH WORKSHOP ON HYPERSPECTRAL IMAGE AND SIGNAL PROCESSING: EVOLUTION IN REMOTE SENSING (WHISPERS), 2016,
  • [37] HYPERSPECTRAL IMAGE CLASSIFICATION BASED ON ITERATIVE SUPPORT VECTOR MACHINE BY INTEGRATING SPATIAL-SPECTRAL INFORMATION
    Belkacem, Baassou
    He, Mingyi
    Imran, Farid Muhammad
    Mei, Shaohui
    2013 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS), 2013, : 1023 - 1026
  • [38] Matrix-Based Discriminant Subspace Ensemble for Hyperspectral Image Spatial-Spectral Feature Fusion
    Hang, Renlong
    Liu, Qingshan
    Song, Huihui
    Sun, Yubao
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2016, 54 (02): : 783 - 794
  • [39] Automatic Spatial-Spectral Feature Selection for Hyperspectral Image via Discriminative Sparse Multimodal Learning
    Zhang, Qian
    Tian, Yuan
    Yang, Yiping
    Pan, Chunhong
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2015, 53 (01): : 261 - 279
  • [40] Feature Learning Using Spatial-Spectral Hypergraph Discriminant Analysis for Hyperspectral Image
    Luo, Fulin
    Du, Bo
    Zhang, Liangpei
    Zhang, Lefei
    Tao, Dacheng
    IEEE TRANSACTIONS ON CYBERNETICS, 2019, 49 (07) : 2406 - 2419